* fuzzing: Add a custom mutator based on `wasm-mutate`
* fuzz: Add a version of the `compile` fuzz target that uses `wasm-mutate`
* Update `wasmparser` dependencies
During instance initialization, we build two sorts of arrays eagerly:
- We create an "anyfunc" (a `VMCallerCheckedAnyfunc`) for every function
in an instance.
- We initialize every element of a funcref table with an initializer to
a pointer to one of these anyfuncs.
Most instances will not touch (via call_indirect or table.get) all
funcref table elements. And most anyfuncs will never be referenced,
because most functions are never placed in tables or used with
`ref.func`. Thus, both of these initialization tasks are quite wasteful.
Profiling shows that a significant fraction of the remaining
instance-initialization time after our other recent optimizations is
going into these two tasks.
This PR implements two basic ideas:
- The anyfunc array can be lazily initialized as long as we retain the
information needed to do so. For now, in this PR, we just recreate the
anyfunc whenever a pointer is taken to it, because doing so is fast
enough; in the future we could keep some state to know whether the
anyfunc has been written yet and skip this work if redundant.
This technique allows us to leave the anyfunc array as uninitialized
memory, which can be a significant savings. Filling it with
initialized anyfuncs is very expensive, but even zeroing it is
expensive: e.g. in a large module, it can be >500KB.
- A funcref table can be lazily initialized as long as we retain a link
to its corresponding instance and function index for each element. A
zero in a table element means "uninitialized", and a slowpath does the
initialization.
Funcref tables are a little tricky because funcrefs can be null. We need
to distinguish "element was initially non-null, but user stored explicit
null later" from "element never touched" (ie the lazy init should not
blow away an explicitly stored null). We solve this by stealing the LSB
from every funcref (anyfunc pointer): when the LSB is set, the funcref
is initialized and we don't hit the lazy-init slowpath. We insert the
bit on storing to the table and mask it off after loading.
We do have to set up a precomputed array of `FuncIndex`s for the table
in order for this to work. We do this as part of the module compilation.
This PR also refactors the way that the runtime crate gains access to
information computed during module compilation.
Performance effect measured with in-tree benches/instantiation.rs, using
SpiderMonkey built for WASI, and with memfd enabled:
```
BEFORE:
sequential/default/spidermonkey.wasm
time: [68.569 us 68.696 us 68.856 us]
sequential/pooling/spidermonkey.wasm
time: [69.406 us 69.435 us 69.465 us]
parallel/default/spidermonkey.wasm: with 1 background thread
time: [69.444 us 69.470 us 69.497 us]
parallel/default/spidermonkey.wasm: with 16 background threads
time: [183.72 us 184.31 us 184.89 us]
parallel/pooling/spidermonkey.wasm: with 1 background thread
time: [69.018 us 69.070 us 69.136 us]
parallel/pooling/spidermonkey.wasm: with 16 background threads
time: [326.81 us 337.32 us 347.01 us]
WITH THIS PR:
sequential/default/spidermonkey.wasm
time: [6.7821 us 6.8096 us 6.8397 us]
change: [-90.245% -90.193% -90.142%] (p = 0.00 < 0.05)
Performance has improved.
sequential/pooling/spidermonkey.wasm
time: [3.0410 us 3.0558 us 3.0724 us]
change: [-95.566% -95.552% -95.537%] (p = 0.00 < 0.05)
Performance has improved.
parallel/default/spidermonkey.wasm: with 1 background thread
time: [7.2643 us 7.2689 us 7.2735 us]
change: [-89.541% -89.533% -89.525%] (p = 0.00 < 0.05)
Performance has improved.
parallel/default/spidermonkey.wasm: with 16 background threads
time: [147.36 us 148.99 us 150.74 us]
change: [-18.997% -18.081% -17.285%] (p = 0.00 < 0.05)
Performance has improved.
parallel/pooling/spidermonkey.wasm: with 1 background thread
time: [3.1009 us 3.1021 us 3.1033 us]
change: [-95.517% -95.511% -95.506%] (p = 0.00 < 0.05)
Performance has improved.
parallel/pooling/spidermonkey.wasm: with 16 background threads
time: [49.449 us 50.475 us 51.540 us]
change: [-85.423% -84.964% -84.465%] (p = 0.00 < 0.05)
Performance has improved.
```
So an improvement of something like 80-95% for a very large module (7420
functions in its one funcref table, 31928 functions total).
* Update the spec reference testsuite submodule
This commit brings in recent updates to the spec test suite. Most of the
changes here were already fixed in `wasmparser` with some tweaks to
esoteric modules, but Wasmtime also gets a bug fix where where import
matching for the size of tables/memories is based on the current runtime
size of the table/memory rather than the original type of the
table/memory. This means that during type matching the actual value is
consulted for its size rather than using the minimum size listed in its
type.
* Fix now-missing directories in build script
* Move `CompiledFunction` into wasmtime-cranelift
This commit moves the `wasmtime_environ::CompiledFunction` type into the
`wasmtime-cranelift` crate. This type has lots of Cranelift-specific
pieces of compilation and doesn't need to be generated by all Wasmtime
compilers. This replaces the usage in the `Compiler` trait with a
`Box<Any>` type that each compiler can select. Each compiler must still
produce a `FunctionInfo`, however, which is shared information we'll
deserialize for each module.
The `wasmtime-debug` crate is also folded into the `wasmtime-cranelift`
crate as a result of this commit. One possibility was to move the
`CompiledFunction` commit into its own crate and have `wasmtime-debug`
depend on that, but since `wasmtime-debug` is Cranelift-specific at this
time it didn't seem like it was too too necessary to keep it separate.
If `wasmtime-debug` supports other backends in the future we can
recreate a new crate, perhaps with it refactored to not depend on
Cranelift.
* Move wasmtime_environ::reference_type
This now belongs in wasmtime-cranelift and nowhere else
* Remove `Type` reexport in wasmtime-environ
One less dependency on `cranelift-codegen`!
* Remove `types` reexport from `wasmtime-environ`
Less cranelift!
* Remove `SourceLoc` from wasmtime-environ
Change the `srcloc`, `start_srcloc`, and `end_srcloc` fields to a custom
`FilePos` type instead of `ir::SourceLoc`. These are only used in a few
places so there's not much to lose from an extra abstraction for these
leaf use cases outside of cranelift.
* Remove wasmtime-environ's dep on cranelift's `StackMap`
This commit "clones" the `StackMap` data structure in to
`wasmtime-environ` to have an independent representation that that
chosen by Cranelift. This allows Wasmtime to decouple this runtime
dependency of stack map information and let the two evolve
independently, if necessary.
An alternative would be to refactor cranelift's implementation into a
separate crate and have wasmtime depend on that but it seemed a bit like
overkill to do so and easier to clone just a few lines for this.
* Define code offsets in wasmtime-environ with `u32`
Don't use Cranelift's `binemit::CodeOffset` alias to define this field
type since the `wasmtime-environ` crate will be losing the
`cranelift-codegen` dependency soon.
* Commit to using `cranelift-entity` in Wasmtime
This commit removes the reexport of `cranelift-entity` from the
`wasmtime-environ` crate and instead directly depends on the
`cranelift-entity` crate in all referencing crates. The original reason
for the reexport was to make cranelift version bumps easier since it's
less versions to change, but nowadays we have a script to do that.
Otherwise this encourages crates to use whatever they want from
`cranelift-entity` since we'll always depend on the whole crate.
It's expected that the `cranelift-entity` crate will continue to be a
lean crate in dependencies and suitable for use at both runtime and
compile time. Consequently there's no need to avoid its usage in
Wasmtime at runtime, since "remove Cranelift at compile time" is
primarily about the `cranelift-codegen` crate.
* Remove most uses of `cranelift-codegen` in `wasmtime-environ`
There's only one final use remaining, which is the reexport of
`TrapCode`, which will get handled later.
* Limit the glob-reexport of `cranelift_wasm`
This commit removes the glob reexport of `cranelift-wasm` from the
`wasmtime-environ` crate. This is intended to explicitly define what
we're reexporting and is a transitionary step to curtail the amount of
dependencies taken on `cranelift-wasm` throughout the codebase. For
example some functions used by debuginfo mapping are better imported
directly from the crate since they're Cranelift-specific. Note that
this is intended to be a temporary state affairs, soon this reexport
will be gone entirely.
Additionally this commit reduces imports from `cranelift_wasm` and also
primarily imports from `crate::wasm` within `wasmtime-environ` to get a
better sense of what's imported from where and what will need to be
shared.
* Extract types from cranelift-wasm to cranelift-wasm-types
This commit creates a new crate called `cranelift-wasm-types` and
extracts type definitions from the `cranelift-wasm` crate into this new
crate. The purpose of this crate is to be a shared definition of wasm
types that can be shared both by compilers (like Cranelift) as well as
wasm runtimes (e.g. Wasmtime). This new `cranelift-wasm-types` crate
doesn't depend on `cranelift-codegen` and is the final step in severing
the unconditional dependency from Wasmtime to `cranelift-codegen`.
The final refactoring in this commit is to then reexport this crate from
`wasmtime-environ`, delete the `cranelift-codegen` dependency, and then
update all `use` paths to point to these new types.
The main change of substance here is that the `TrapCode` enum is
mirrored from Cranelift into this `cranelift-wasm-types` crate. While
this unfortunately results in three definitions (one more which is
non-exhaustive in Wasmtime itself) it's hopefully not too onerous and
ideally something we can patch up in the future.
* Get lightbeam compiling
* Remove unnecessary dependency
* Fix compile with uffd
* Update publish script
* Fix more uffd tests
* Rename cranelift-wasm-types to wasmtime-types
This reflects the purpose a bit more where it's types specifically
intended for Wasmtime and its support.
* Fix publish script
Previously cranelift's wasm code generator would emit a raw `store`
instruction for all wasm types, regardless of what the cranelift operand
type was. Cranelift's `store` instruction, however, isn't valid for
boolean vector types. This commit fixes this issue by inserting a
bitcast specifically for the store instruction if a boolean vector type
is being stored, continuing to avoid the bitcast for all other vector types.
Closes#3099
* Implement the memory64 proposal in Wasmtime
This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.
A number of internal and public interfaces are changing as a result of
this commit, for example:
* Acessors on `wasmtime::Memory` that work with pages now all return
`u64` unconditionally rather than `u32`. This makes it possible to
accommodate 64-bit memories with this API, but we may also want to
consider `usize` here at some point since the host can't grow past
`usize`-limited pages anyway.
* The `wasmtime::Limits` structure is removed in favor of
minimum/maximum methods on table/memory types.
* Many libcall intrinsics called by jit code now unconditionally take
`u64` arguments instead of `u32`. Return values are `usize`, however,
since the return value, if successful, is always bounded by host
memory while arguments can come from any guest.
* The `heap_addr` clif instruction now takes a 64-bit offset argument
instead of a 32-bit one. It turns out that the legalization of
`heap_addr` already worked with 64-bit offsets, so this change was
fairly trivial to make.
* The runtime implementation of mmap-based linear memories has changed
to largely work in `usize` quantities in its API and in bytes instead
of pages. This simplifies various aspects and reflects that
mmap-memories are always bound by `usize` since that's what the host
is using to address things, and additionally most calculations care
about bytes rather than pages except for the very edge where we're
going to/from wasm.
Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.
In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:
* All memory accesses are bounds-checked. I'm not sure how aggressively
Cranelift tries to optimize out bounds checks, but I suspect not a ton
since we haven't stressed this much historically.
* Heaps are always precisely sized. This means that every call to
`memory.grow` will incur a `memcpy` of memory from the old heap to the
new. We probably want to at least look into `mremap` on Linux and
otherwise try to implement schemes where dynamic heaps have some
reserved pages to grow into to help amortize the cost of
`memory.grow`.
The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.
[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
* Fix some tests
* More test fixes
* Fix wasmtime tests
* Fix doctests
* Revert to 32-bit immediate offsets in `heap_addr`
This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.
* Disable memory64 for spectest fuzzing
* Fix wrong offset being added to heap addr
* More comments!
* Clarify bytes/pages
* Consolidate address calculations for atomics
This commit consolidates all calcuations of guest addresses into one
`prepare_addr` function. This notably remove the atomics-specifics paths
as well as the `prepare_load` function (now renamed to `prepare_addr`
and folded into `get_heap_addr`).
The goal of this commit is to simplify how addresses are managed in the
code generator for atomics to use all the shared infrastrucutre of other
loads/stores as well. This additionally fixes#3132 via the use of
`heap_addr` in clif for all operations.
I also added a number of tests for loads/stores with varying alignments.
Originally I was going to allow loads/stores to not be aligned since
that's what the current formal specification says, but the overview of
the threads proposal disagrees with the formal specification, so I
figured I'd leave it as-is but adding tests probably doesn't hurt.
Closes#3132
* Fix old backend
* Guarantee misalignment checks happen before out-of-bounds
* Bump the wasm-tools crates
Pulls in some updates here and there, mostly for updating crates to the
latest version to prepare for later memory64 work.
* Update lightbeam
* Change VMMemoryDefinition::current_length to `usize`
This commit changes the definition of
`VMMemoryDefinition::current_length` to `usize` from its previous
definition of `u32`. This is a pretty impactful change because it also
changes the cranelift semantics of "dynamic" heaps where the bound
global value specifier must now match the pointer type for the platform
rather than the index type for the heap.
The motivation for this change is that the `current_length` field (or
bound for the heap) is intended to reflect the current size of the heap.
This is bound by `usize` on the host platform rather than `u32` or`
u64`. The previous choice of `u32` couldn't represent a 4GB memory
because we couldn't put a number representing 4GB into the
`current_length` field. By using `usize`, which reflects the host's
memory allocation, this should better reflect the size of the heap and
allows Wasmtime to support a full 4GB heap for a wasm program (instead
of 4GB minus one page).
This commit also updates the legalization of the `heap_addr` clif
instruction to appropriately cast the address to the platform's pointer
type, handling bounds checks along the way. The practical impact for
today's targets is that a `uextend` is happening sooner than it happened
before, but otherwise there is no intended impact of this change. In the
future when 64-bit memories are supported there will likely need to be
fancier logic which handles offsets a bit differently (especially in the
case of a 64-bit memory on a 32-bit host).
The clif `filetest` changes should show the differences in codegen, and
the Wasmtime changes are largely removing casts here and there.
Closes#3022
* Add tests for memory.size at maximum memory size
* Add a dfg helper method
Also, reorganize the AArch64-specific VCode instructions for unary
narrowing and widening vector operations, so that they are more
straightforward to use.
Copyright (c) 2021, Arm Limited.
* Update wasm-tools crates
This brings in recent updates, notably including more improvements to
wasm-smith which will hopefully help exercise non-trapping wasm more.
* Fix some wat
* Add support for x64 packed promote low
* Add support for x64 packed floating point demote
* Update vector promote low and demote by adding constraints
Also does some renaming and minor refactoring
The Wasm SIMD specification has added new instructions that allow inserting to the lane of a vector from a memory location, and conversely, extracting from a lane of a vector to a memory location. The simplest implementation lowers these instructions, `load[8|16|32|64]_lane` and `store[8|16|32|64]_lane`, to a sequence of either `load + insertlane` or `extractlane + store` (in CLIF). With the new backend's pattern matching, we expect these CLIF sequences to compile as a single machine instruction (at least in x64).
This instruction has a single instruction lowering in AVX512F/VL and a three instruction lowering in AVX but neither is currently supported in the x64 backend. To implement this, we instead subtract the vector from 0 and use a blending instruction to pick the lanes containing the absolute value.
* Update wasm-tools crates
* Update Wasm SIMD spec tests
* Invert 'experimental_x64_should_panic' logic
By doing this, it is easier to see which spec tests currently panic. The new tests correspond to recently-added instructions.
* Fix: ignore new spec tests for all backends
* Consume fuel during function execution
This commit adds codegen infrastructure necessary to instrument wasm
code to consume fuel as it executes. Currently nothing is really done
with the fuel, but that'll come in later commits.
The focus of this commit is to implement the codegen infrastructure
necessary to consume fuel and account for fuel consumed correctly.
* Periodically check remaining fuel in wasm JIT code
This commit enables wasm code to periodically check to see if fuel has
run out. When fuel runs out an intrinsic is called which can do what it
needs to do in the result of fuel running out. For now a trap is thrown
to have at least some semantics in synchronous stores, but another
planned use for this feature is for asynchronous stores to periodically
yield back to the host based on fuel running out.
Checks for remaining fuel happen in the same locations as interrupt
checks, which is to say the start of the function as well as loop
headers.
* Improve codegen by caching `*const VMInterrupts`
The location of the shared interrupt value and fuel value is through a
double-indirection on the vmctx (load through the vmctx and then load
through that pointer). The second pointer in this chain, however, never
changes, so we can alter codegen to account for this and remove some
extraneous load instructions and hopefully reduce some register
pressure even maybe.
* Add tests fuel can abort infinite loops
* More fuzzing with fuel
Use fuel to time out modules in addition to time, using fuzz input to
figure out which.
* Update docs on trapping instructions
* Fix doc links
* Fix a fuzz test
* Change setting fuel to adding fuel
* Fix a doc link
* Squelch some rustdoc warnings
This commit goes through the dependencies that wasmtime has and updates
versions where possible. This notably brings in a wasmparser/wast update
which has some simd spec changes with new instructions. Otherwise most
of these are just routine updates.
The translation of Operator::Select and Operator::TypedSelect for vector-typed
operands, lacks the relevant bitcasting of the operands to I8X16. This commit
adds it.
WebAssembly memory operations are by definition little-endian even on
big-endian target platforms. However, other memory accesses will require
native target endianness (e.g. to access parts of the VMContext that is
also accessed by VM native code). This means on big-endian targets,
the code generator will have to handle both little- and big-endian
memory accesses. However, there is currently no way to encode that
distinction into the Cranelift IR that describes memory accesses.
This patch provides such a way by adding an (optional) explicit
endianness marker to an instance of MemFlags. Since each Cranelift IR
instruction that describes memory accesses already has an instance of
MemFlags attached, this can now be used to provide endianness
information.
Note that by default, memory accesses will continue to use the native
target ISA endianness. To override this to specify an explicit
endianness, a MemFlags value that was built using the set_endianness
routine must be used. This patch does so for accesses that implement
WebAssembly memory operations.
This patch addresses issue #2124.
This commit updates all the wasm-tools crates that we use and enables
fuzzing of the module linking proposal in our various fuzz targets. This
also refactors some of the dummy value generation logic to not be
fallible and to always succeed, the thinking being that we don't want to
accidentally hide errors while fuzzing. Additionally instantiation is
only allowed to fail with a `Trap`, other failure reasons are unwrapped.
This makes the value of `state.reachable()` inaccurate when observing at
the tail of functions (in the post-function hook) after an ordinary
return instruction.
This was added as an incremental step to improve AArch64 code quality in
PR #2278. At the time, we did not have a way to pattern-match the load +
splat opcode sequence that the relevant Wasm opcodes lowered to.
However, now with PR #2366, we can merge effectful instructions such as
loads into other ops, and so we can do this pattern matching directly.
The pattern-matching update will come in a subsequent commit.
This commit adds lots of plumbing to get the type section from the
module linking proposal plumbed all the way through to the `wasmtime`
crate and the `wasmtime-c-api` crate. This isn't all that useful right
now because Wasmtime doesn't support imported/exported
modules/instances, but this is all necessary groundwork to getting that
exported at some point. I've added some light tests but I suspect the
bulk of the testing will come in a future commit.
One major change in this commit is that `SignatureIndex` no longer
follows type type index space in a wasm module. Instead a new
`TypeIndex` type is used to track that. Function signatures, still
indexed by `SignatureIndex`, are then packed together tightly.
This patch implements, for aarch64, the following wasm SIMD extensions.
v128.load32_zero and v128.load64_zero instructions
https://github.com/WebAssembly/simd/pull/237
The changes are straightforward:
* no new CLIF instructions. They are translated into an existing CLIF scalar
load followed by a CLIF `scalar_to_vector`.
* the comment/specification for CLIF `scalar_to_vector` has been changed to
match the actual intended semantics, per consulation with Andrew Brown.
* translation from `scalar_to_vector` to aarch64 `fmov` instruction. This
has been generalised slightly so as to allow both 32- and 64-bit transfers.
* special-case zero in `lower_constant_f128` in order to avoid a
potentially slow call to `Inst::load_fp_constant128`.
* Once "Allow loads to merge into other operations during instruction
selection in MachInst backends"
(https://github.com/bytecodealliance/wasmtime/issues/2340) lands,
we can use that functionality to pattern match the two-CLIF pair and
emit a single AArch64 instruction.
* A simple filetest has been added.
There is no comprehensive testcase in this commit, because that is a separate
repo. The implementation has been tested, nevertheless.
This patch implements, for aarch64, the following wasm SIMD extensions
i32x4.dot_i16x8_s instruction
https://github.com/WebAssembly/simd/pull/127
It also updates dependencies as follows, in order that the new instruction can
be parsed, decoded, etc:
wat to 1.0.27
wast to 26.0.1
wasmparser to 0.65.0
wasmprinter to 0.2.12
The changes are straightforward:
* new CLIF instruction `widening_pairwise_dot_product_s`
* translation from wasm into `widening_pairwise_dot_product_s`
* new AArch64 instructions `smull`, `smull2` (part of the `VecRRR` group)
* translation from `widening_pairwise_dot_product_s` to `smull ; smull2 ; addv`
There is no testcase in this commit, because that is a separate repo. The
implementation has been tested, nevertheless.
This patch implements, for aarch64, the following wasm SIMD extensions
Floating-point rounding instructions
https://github.com/WebAssembly/simd/pull/232
Pseudo-Minimum and Pseudo-Maximum instructions
https://github.com/WebAssembly/simd/pull/122
The changes are straightforward:
* `build.rs`: the relevant tests have been enabled
* `cranelift/codegen/meta/src/shared/instructions.rs`: new CLIF instructions
`fmin_pseudo` and `fmax_pseudo`. The wasm rounding instructions do not need
any new CLIF instructions.
* `cranelift/wasm/src/code_translator.rs`: translation into CLIF; this is
pretty much the same as any other unary or binary vector instruction (for
the rounding and the pmin/max respectively)
* `cranelift/codegen/src/isa/aarch64/lower_inst.rs`:
- `fmin_pseudo` and `fmax_pseudo` are converted into a two instruction
sequence, `fcmpgt` followed by `bsl`
- the CLIF rounding instructions are converted to a suitable vector
`frint{n,z,p,m}` instruction.
* `cranelift/codegen/src/isa/aarch64/inst/mod.rs`: minor extension of `pub
enum VecMisc2` to handle the rounding operations. And corresponding `emit`
cases.