This commit removes Wasmtime's dependency on the `region` crate. The
motivation for this came about when I was updating dependencies and saw
that `region` had a new major version at 3.0.0 as opposed to our
currently used 2.3 track. In reviewing the use cases of `region` within
Wasmtime I found two trends in particular which motivated this commit:
* Some unix-specific areas of `wasmtime_runtime` use
`rustix::mm::mprotect` instead of `region::protect` already. This
means that the usage of `region::protect` for changing virtual memory
protections was already inconsistent.
* Many uses of `region::protect` were already in unix-specific regions
which could make use of `rustix`.
Overall I opted to remove the dependency on the `region` crate to avoid
chasing its versions over time. Unix-specific changes of protections
were easily changed to `rustix::mm::mprotect`. There were two locations
where a windows/unix split is now required and I subjectively ruled
"that seems ok". Finally removing `region` also meant that the "what is
the current page size" query needed to be inlined into
`wasmtime_runtime`, which I have also subjectively ruled "that seems
fine".
Finally one final refactoring here was that the `unix.rs` and `linux.rs`
split for the pooling allocator was merged. These two files already only
differed in one function so I slapped a `cfg_if!` in there to help
reduce the duplication.
When setting up a copy on write image, we add several seals, to prevent
the image from being resized or modified. Set all the seals in a single
call, rather than doing one call per seal.
* Implement `canon lower` of a `canon lift` function in the same component
This commit implements the "degenerate" logic for implementing a
function within a component that is lifted and then immediately lowered
again. In this situation the lowered function will immediately generate
a trap and doesn't need to implement anything else.
The implementation in this commit is somewhat heavyweight but I think is
probably justified moreso in future additions to the component model
rather than what exactly is here right now. It's not expected that this
"always trap" functionality will really be used all that often since it
would generally mean a buggy component, but the functionality plumbed
through here is hopefully going to be useful for implementing
component-to-component adapter trampolines.
Specifically this commit implements a strategy where the `canon.lower`'d
function is generated by Cranelift and simply has a single trap
instruction when called, doing nothing else. The main complexity comes
from juggling around all the data associated with these functions,
primarily plumbing through the traps into the `ModuleRegistry` to
ensure that the global `is_wasm_trap_pc` function returns `true` and at
runtime when we lookup information about the trap it's all readily
available (e.g. translating the trapping pc to a `TrapCode`).
* Fix non-component build
* Fix some offset calculations
* Only create one "always trap" per signature
Use an internal map to deduplicate during compilation.
* Implement lowered-then-lifted functions
This commit is a few features bundled into one, culminating in the
implementation of lowered-then-lifted functions for the component model.
It's probably not going to be used all that often but this is possible
within a valid component so Wasmtime needs to do something relatively
reasonable. The main things implemented in this commit are:
* Component instances are now assigned a `RuntimeComponentInstanceIndex`
to differentiate each one. This will be used in the future to detect
fusion (one instance lowering a function from another instance). For
now it's used to allocate separate `VMComponentFlags` for each
internal component instance.
* The `CoreExport<FuncIndex>` of lowered functions was changed to a
`CoreDef` since technically a lowered function can use another lowered
function as the callee. This ended up being not too difficult to plumb
through as everything else was already in place.
* A need arose to compile host-to-wasm trampolines which weren't already
present. Currently wasm in a component is always entered through a
host-to-wasm trampoline but core wasm modules are the source of all
the trampolines. In the case of a lowered-then-lifted function there
may not actually be any core wasm modules, so component objects now
contain necessary trampolines not otherwise provided by the core wasm
objects. This feature required splitting a new function into the
`Compiler` trait for creating a host-to-wasm trampoline. After doing
this core wasm compilation was also updated to leverage this which
further enabled compiling trampolines in parallel as opposed to the
previous synchronous compilation.
* Review comments
* Migrate from `winapi` to `windows-sys`
I believe that Microsoft itself is supporting the development of
`windows-sys` and it's also used by `cap-std` now so this switches
Wasmtime's dependencies on Windows APIs from the `winapi` crate to the
`windows-sys` crate. We still have `winapi` in our dependency graph but
that may get phased out over time.
* Make windows-sys a target-specific dependency
Previous to this commit Wasmtime would use the `GlobalModuleRegistry`
when learning information about a trap such as its trap code, the
symbols for each frame, etc. This has a downside though of holding a
global read-write lock for the duration of this operation which hinders
registration of new modules in parallel. In addition there was a fair
amount of internal duplication between this "global module registry" and
the store-local module registry. Finally relying on global state for
information like this gets a bit more brittle over time as it seems best
to scope global queries to precisely what's necessary rather than
holding extra information.
With the refactoring in wasm backtraces done in #4183 it's now possible
to always have a `StoreOpaque` reference when a backtrace is collected
for symbolication and otherwise Trap-identification purposes. This
commit adds a `StoreOpaque` parameter to the `Trap::from_runtime`
constructor and then plumbs that everywhere. Note that while doing this
I changed the internal `traphandlers::lazy_per_thread_init` function to
no longer return a `Result` and instead just `panic!` on Unix if memory
couldn't be allocated for a stack. This removed quite a lot of
error-handling code for a case that's expected to quite rarely happen.
If necessary in the future we can add a fallible initialization point
but this feels like a better default balance for the code here.
With a `StoreOpaque` in use when a trap is being symbolicated that means
we have a `ModuleRegistry` which can be used for queries and such. This
meant that the `GlobalModuleRegistry` state could largely be dismantled
and moved to per-`Store` state (within the `ModuleRegistry`, mostly just
moving methods around).
The final state is that the global rwlock is not exclusively scoped
around insertions/deletions/`is_wasm_trap_pc` which is just a lookup and
atomic add. Otherwise symbolication for a backtrace exclusively uses
store-local state now (as intended).
The original motivation for this commit was that frame information
lookup and pieces were looking to get somewhat complicated with the
addition of components which are a new vector of traps coming out of
Cranelift-generated code. My hope is that by having a `Store` around for
more operations it's easier to plumb all this through.
This commit is a small refactoring of `wasmtime_runtime::Trap` and
various internals. The `Trap` structure is now a reason plus backtrace,
and the old `Trap` enum is mostly in `TrapReason` now. Additionally all
`Trap`-returning methods of `wasmtime_runtime` are changed to returning
a `TrapCode` to indicate that they never capture a backtrace. Finally
the `UnwindReason` internally now no longer duplicates the trap reasons,
instead only having two variants of "panic" and "trap".
The motivation for this commit is mostly just cleaning up trap internals
and removing the need for methods like
`wasmtime_runtime::Trap::insert_backtrace` to leave it only happening at
the `wasmtime` layer.
This commit implements the `post-return` feature of the canonical ABI in
the component model. This attribute is an optionally-specified function
which is to be executed after the return value has been processed by the
caller to optionally clean-up the return value. This enables, for
example, returning an allocated string and the host then knows how to
clean it up to prevent memory leaks in the original module.
The API exposed in this PR changes the prior `TypedFunc::call` API in
behavior but not in its signature. Previously the `TypedFunc::call`
method would set the `may_enter` flag on the way out, but now that
operation is deferred until a new `TypedFunc::post_return` method is
called. This means that once a method on an instance is invoked then
nothing else can be done on the instance until the `post_return` method
is called. Note that the method must be called irrespective of whether
the `post-return` canonical ABI option was specified or not. Internally
wasm will be invoked if necessary.
This is a pretty wonky and unergonomic API to work with. For now I
couldn't think of a better alternative that improved on the ergonomics.
In the theory that the raw Wasmtime bindings for a component may not be
used all that heavily (instead `wit-bindgen` would largely be used) I'm
hoping that this isn't too much of an issue in the future.
cc #4185
This updates to rustix 0.35.6, and updates wasi-common to use cap-std 0.25 and
windows-sys (instead of winapi).
Changes include:
- Better error code mappings on Windows.
- Fixes undefined references to `utimensat` on Darwin.
- Fixes undefined references to `preadv64` and `pwritev64` on Android.
- Updates to io-lifetimes 0.7, which matches the io_safety API in Rust.
- y2038 bug fixes for 32-bit platforms
Previously, @alexcrichton had mentioned that some of these assertions
should be bubbled up as errors. This change re-factors two such
assertions, leaving others in this file as assertions since they
represent code paths that we should avoid internally (not by external
users).
* Add shared memories
This change adds the ability to use shared memories in Wasmtime when the
[threads proposal] is enabled. Shared memories are annotated as `shared`
in the WebAssembly syntax, e.g., `(memory 1 1 shared)`, and are
protected from concurrent access during `memory.size` and `memory.grow`.
[threads proposal]: https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md
In order to implement this in Wasmtime, there are two main cases to
cover:
- a program may simply create a shared memory and possibly export it;
this means that Wasmtime itself must be able to create shared
memories
- a user may create a shared memory externally and pass it in as an
import during instantiation; this is the case when the program
contains code like `(import "env" "memory" (memory 1 1
shared))`--this case is handled by a new Wasmtime API
type--`SharedMemory`
Because of the first case, this change allows any of the current
memory-creation mechanisms to work as-is. Wasmtime can still create
either static or dynamic memories in either on-demand or pooling modes,
and any of these memories can be considered shared. When shared, the
`Memory` runtime container will lock appropriately during `memory.size`
and `memory.grow` operations; since all memories use this container, it
is an ideal place for implementing the locking once and once only.
The second case is covered by the new `SharedMemory` structure. It uses
the same `Mmap` allocation under the hood as non-shared memories, but
allows the user to perform the allocation externally to Wasmtime and
share the memory across threads (via an `Arc`). The pointer address to
the actual memory is carefully wired through and owned by the
`SharedMemory` structure itself. This means that there are differing
views of where to access the pointer (i.e., `VMMemoryDefinition`): for
owned memories (the default), the `VMMemoryDefinition` is stored
directly by the `VMContext`; in the `SharedMemory` case, however, this
`VMContext` must point to this separate structure.
To ensure that the `VMContext` can always point to the correct
`VMMemoryDefinition`, this change alters the `VMContext` structure.
Since a `SharedMemory` owns its own `VMMemoryDefinition`, the
`defined_memories` table in the `VMContext` becomes a sequence of
pointers--in the shared memory case, they point to the
`VMMemoryDefinition` owned by the `SharedMemory` and in the owned memory
case (i.e., not shared) they point to `VMMemoryDefinition`s stored in a
new table, `owned_memories`.
This change adds an additional indirection (through the `*mut
VMMemoryDefinition` pointer) that could add overhead. Using an imported
memory as a proxy, we measured a 1-3% overhead of this approach on the
`pulldown-cmark` benchmark. To avoid this, Cranelift-generated code will
special-case the owned memory access (i.e., load a pointer directly to
the `owned_memories` entry) for `memory.size` so that only
shared memories (and imported memories, as before) incur the indirection
cost.
* review: remove thread feature check
* review: swap wasmtime-types dependency for existing wasmtime-environ use
* review: remove unused VMMemoryUnion
* review: reword cross-engine error message
* review: improve tests
* review: refactor to separate prevent Memory <-> SharedMemory conversion
* review: into_shared_memory -> as_shared_memory
* review: remove commented out code
* review: limit shared min/max to 32 bits
* review: skip imported memories
* review: imported memories are not owned
* review: remove TODO
* review: document unsafe send + sync
* review: add limiter assertion
* review: remove TODO
* review: improve tests
* review: fix doc test
* fix: fixes based on discussion with Alex
This changes several key parts:
- adds memory indexes to imports and exports
- makes `VMMemoryDefinition::current_length` an atomic usize
* review: add `Extern::SharedMemory`
* review: remove TODO
* review: atomically load from VMMemoryDescription in JIT-generated code
* review: add test probing the last available memory slot across threads
* fix: move assertion to new location due to rebase
* fix: doc link
* fix: add TODOs to c-api
* fix: broken doc link
* fix: modify pooling allocator messages in tests
* review: make owned_memory_index panic instead of returning an option
* review: clarify calculation of num_owned_memories
* review: move 'use' to top of file
* review: change '*const [u8]' to '*mut [u8]'
* review: remove TODO
* review: avoid hard-coding memory index
* review: remove 'preallocation' parameter from 'Memory::_new'
* fix: component model memory length
* review: check that shared memory plans are static
* review: ignore growth limits for shared memory
* review: improve atomic store comment
* review: add FIXME for memory growth failure
* review: add comment about absence of bounds-checked 'memory.size'
* review: make 'current_length()' doc comment more precise
* review: more comments related to memory.size non-determinism
* review: make 'vmmemory' unreachable for shared memory
* review: move code around
* review: thread plan through to 'wrap()'
* review: disallow shared memory allocation with the pooling allocator
* Add a `VMComponentContext` type and create it on instantiation
This commit fills out the `wasmtime-runtime` crate's support for
`VMComponentContext` and creates it as part of the instantiation
process. This moves a few maps that were temporarily allocated in an
`InstanceData` into the `VMComponentContext` and additionally reads the
canonical options data from there instead.
This type still won't be used in its "full glory" until the lowering of
host functions is completely implemented, however, which will be coming
in a future commit.
* Remove `DerefMut` implementation
* Rebase conflicts
* Add trampoline compilation support for lowered imports
This commit adds support to the component model implementation for
compiling trampolines suitable for calling host imports. Currently this
is purely just the compilation side of things, modifying the
wasmtime-cranelift crate and additionally filling out a new
`VMComponentOffsets` type (similar to `VMOffsets`). The actual creation
of a `VMComponentContext` is still not performed and will be a
subsequent PR.
Internally though some tests are actually possible with this where we at
least assert that compilation of a component and creation of everything
in-memory doesn't panic or trip any assertions, so some tests are added
here for that as well.
* Fix some test errors
* Fix double-counting imports in `VMOffsets` calculations
This fixes an oversight in the initial creation of `VMOffsets` for a
module to avoid double-counting imported globals, tables, and memories
for calculating the size of the `VMContext`. Prior to this PR imported
items are accidentally also counted as defined items for sizing
calculations meaning that when a memory is imported but not defined, for
example, the `VMContext` will have a space for an inline
`VMMemoryDefinition` when it doesn't need to.
Auditing where all this relates to it appears that the only issue from
this mistake is that `VMContext` is a bit larger than it would otherwise
need to be. Extra slots are uninitialized memory but nothing in Wasmtime
ever actually accesses the memory either, so it should be harmless to
have extra space here. Nevertheless it seems better to shrink the size
as much as possible to avoid wasting space where we can.
* Fix tests
* Change some `VMContext` pointers to `()` pointers
This commit is motivated by my work on the component model
implementation for imported functions. Currently all context pointers in
wasm are `*mut VMContext` but with the component model my plan is to
make some pointers instead along the lines of `*mut VMComponentContext`.
In doing this though one worry I have is breaking what has otherwise
been a core invariant of Wasmtime for quite some time, subtly
introducing bugs by accident.
To help assuage my worry I've opted here to erase knowledge of
`*mut VMContext` where possible. Instead where applicable a context
pointer is simply known as `*mut ()` and the embedder doesn't actually
know anything about this context beyond the value of the pointer. This
will help prevent Wasmtime from accidentally ever trying to interpret
this context pointer as an actual `VMContext` when it might instead be a
`VMComponentContext`.
Overall this was a pretty smooth transition. The main change here is
that the `VMTrampoline` (now sporting more docs) has its first argument
changed to `*mut ()`. The second argument, the caller context, is still
configured as `*mut VMContext` though because all functions are always
called from wasm still. Eventually for component-to-component calls I
think we'll probably "fake" the second argument as the same as the first
argument, losing track of the original caller, as an intentional way of
isolating components from each other.
Along the way there are a few host locations which do actually assume
that the first argument is indeed a `VMContext`. These are valid
assumptions that are upheld from a correct implementation, but I opted
to add a "magic" field to `VMContext` to assert this in debug mode. This
new "magic" field is inintialized during normal vmcontext initialization
and it's checked whenever a `VMContext` is reinterpreted as an
`Instance` (but only in debug mode). My hope here is to catch any future
accidental mistakes, if ever.
* Use a VMOpaqueContext wrapper
* Fix typos
I was running tests recently and was surprised that the `--test all`
test was taking more than a minute to run when I didn't recall it ever
taking more than a minute historically. A bisection pointed out #4183 as
the cause and after re-reviewing I realized I forgot that we capture
unresolved backtraces by default (and don't actually resolve them
anywhere yet but that's a problem for another day) rather than resolved
backtraces. This means that it's intended that we use
`Backtrace::new_unresolved` instead of `Backtrace::new` in the
traphandlers crate.
The reason that tests were running so slowly is that the tests which
deal with deep stacks (e.g. stack overflow) would take forever in
testing as the Rust-based decoding of DWARF information is egregiously
slow in unoptimized mode. I did discover independently that optimizing
these dependencies makes the tests ~6x faster, but that's irrelevant if
we're not symbolicating in the first place.
* sorta working in runtime
* wasmtime-runtime: get rid of wasm-backtrace feature
* wasmtime: factor to make backtraces recording optional. not configurable yet
* get rid of wasm-backtrace features
* trap tests: now a Trap optionally contains backtrace
* eliminate wasm-backtrace feature
* code review fixes
* ci: no more wasm-backtrace feature
* c_api: backtraces always enabled
* config: unwind required by backtraces and ref types
* plumbed
* test that disabling backtraces works
* code review comments
* fuzzing generator: wasm_backtrace is a runtime config now
* doc fix
* Make `ValRaw` fields private
Force accessing to go through constructors and accessors to localize the
knowledge about little-endian-ness. This is spawned since I made a
mistake in #4039 about endianness.
* Fix some tests
* Component model changes
* Remove the `Paged` memory initialization variant
This commit simplifies the `MemoryInitialization` enum by removing the
`Paged` variant. The `Paged` variant was originally added for uffd, but
that support has now been removed in #4040. This is no longer necessary
but is still used as an intermediate step of becoming a `Static` variant
of initialized memory (which copy-on-write uses). As a result this
commit largely modifies the static initialization of memory steps and
folds the two methods together.
* Apply suggestions from code review
Co-authored-by: Peter Huene <peter@huene.dev>
Co-authored-by: Peter Huene <peter@huene.dev>
While working with the runtime `Memory` object, it became clear that
some refactoring was needed. In order to implement shared memory from
the threads proposal, we must be able to atomically change the memory
size. Previously, the split into variants, `Memory::Static` and
`Memory::Dynamic`, made any attempt to lock forced us to duplicate logic
in various places.
This change moves `enum Memory { Static..., Dynamic... }` to simply
`struct Memory(Box<dyn RuntimeLinearMemory>)`. A new type,
`ExternalMemory`, takes the place of `Memory::Static` and also
implements the `RuntimeLinearMemory` trait, allowing `Memory` to contain
the same two options as before: `MmapMemory` for `Memory::Dynamic` and
`ExternalMemory` for `Memory::Static`. To interface with the
`PoolingAllocator`, this change also required the ability to downcast to
the internal representation.
* Reduce contention on the global module rwlock
This commit intendes to close#4025 by reducing contention on the global
rwlock Wasmtime has for module information during instantiation and
dropping a store. Currently registration of a module into this global
map happens during instantiation, but this can be a hot path as
embeddings may want to, in parallel, instantiate modules.
Instead this switches to a strategy of inserting into the global module
map when a `Module` is created and then removing it from the map when
the `Module` is dropped. Registration in a `Store` now preserves the
entire `Module` within the store as opposed to trying to only save it
piecemeal. In reality the only piece that wasn't saved within a store
was the `TypeTables` which was pretty inconsequential for core wasm
modules anyway.
This means that instantiation should now clone a singluar `Arc` into a
`Store` per `Module` (previously it cloned two) with zero managemnt on
the global rwlock as that happened at `Module` creation time.
Additionally dropping a `Store` again involves zero rwlock management
and only a single `Arc` drop per-instantiated module (previously it was
two).
In the process of doing this I also went ahead and removed the
`Module::new_with_name` API. This has been difficult to support
historically with various variations on the internals of `ModuleInner`
because it involves mutating a `Module` after it's been created. My hope
is that this API is pretty rarely used and/or isn't super important, so
it's ok to remove.
Finally this change removes some internal `Arc` layerings that are no
longer necessary, attempting to use either `T` or `&T` where possible
without dealing with the overhead of an `Arc`.
Closes#4025
* Move back to a `BTreeMap` in `ModuleRegistry`
This commit removes support for the `userfaultfd` or "uffd" syscall on
Linux. This support was originally added for users migrating from Lucet
to Wasmtime, but the recent developments of kernel-supported
copy-on-write support for memory initialization wound up being more
appropriate for these use cases than usefaultfd. The main reason for
moving to copy-on-write initialization are:
* The `userfaultfd` feature was never necessarily intended for this
style of use case with wasm and was susceptible to subtle and rare
bugs that were extremely difficult to track down. We were never 100%
certain that there were kernel bugs related to userfaultfd but the
suspicion never went away.
* Handling faults with userfaultfd was always slow and single-threaded.
Only one thread could handle faults and traveling to user-space to
handle faults is inherently slower than handling them all in the
kernel. The single-threaded aspect in particular presented a
significant scaling bottleneck for embeddings that want to run many
wasm instances in parallel.
* One of the major benefits of userfaultfd was lazy initialization of
wasm linear memory which is also achieved with the copy-on-write
initialization support we have right now.
* One of the suspected benefits of userfaultfd was less frobbing of the
kernel vma structures when wasm modules are instantiated. Currently
the copy-on-write support has a mitigation where we attempt to reuse
the memory images where possible to avoid changing vma structures.
When comparing this to userfaultfd's performance it was found that
kernel modifications of vmas aren't a worrisome bottleneck so
copy-on-write is suitable for this as well.
Overall there are no remaining benefits that userfaultfd gives that
copy-on-write doesn't, and copy-on-write solves a major downsides of
userfaultfd, the scaling issue with a single faulting thread.
Additionally copy-on-write support seems much more robust in terms of
kernel implementation since it's only using standard memory-management
syscalls which are heavily exercised. Finally copy-on-write support
provides a new bonus where read-only memory in WebAssembly can be mapped
directly to the same kernel cache page, even amongst many wasm instances
of the same module, which was never possible with userfaultfd.
In light of all this it's expected that all users of userfaultfd should
migrate to the copy-on-write initialization of Wasmtime (which is
enabled by default).
* Store the `ValRaw` type in little-endian format
This commit changes the internal representation of the `ValRaw` type to
an unconditionally little-endian format instead of its current
native-endian format. The documentation and various accessors here have
been updated as well as the associated trampolines that read `ValRaw`
to always work with little-endian values, converting to the host
endianness as necessary.
The motivation for this change originally comes from the implementation
of the component model that I'm working on. One aspect of the component
model's canonical ABI is how variants are passed to functions as
immediate arguments. For example for a component model function:
```
foo: function(x: expected<i32, f64>)
```
This translates to a core wasm function:
```wasm
(module
(func (export "foo") (param i32 i64)
;; ...
)
)
```
The first `i32` parameter to the core wasm function is the discriminant
of whether the result is an "ok" or an "err". The second `i64`, however,
is the "join" operation on the `i32` and `f64` payloads. Essentially
these two types are unioned into one type to get passed into the function.
Currently in the implementation of the component model my plan is to
construct a `*mut [ValRaw]` to pass through to WebAssembly, always
invoking component exports through host trampolines. This means that the
implementation for `Result<T, E>` needs to do the correct "join"
operation here when encoding a particular case into the corresponding
`ValRaw`.
I personally found this particularly tricky to do structurally. The
solution that I settled on with fitzgen was that if `ValRaw` was always
stored in a little endian format then we could employ a trick where when
encoding a variant we first set all the `ValRaw` slots to zero, then the
associated case we have is encoding. Afterwards the `ValRaw` values are
already encoded into the correct format as if they'd been "join"ed.
For example if we were to encode `Ok(1i32)` then this would produce
`ValRaw { i32: 1 }`, which memory-wise is equivalent to `ValRaw { i64: 1 }`
if the other bytes in the `ValRaw` are guaranteed to be zero. Similarly
storing `ValRaw { f64 }` is equivalent to the storage required for
`ValRaw { i64 }` here in the join operation.
Note, though, that this equivalence relies on everything being
little-endian. Otherwise the in-memory representations of `ValRaw { i32: 1 }`
and `ValRaw { i64: 1 }` are different.
That motivation is what leads to this change. It's expected that this is
a low-to-zero cost change in the sense that little-endian platforms will
see no change and big-endian platforms are already required to
efficiently byte-swap loads/stores as WebAssembly requires that.
Additionally the `ValRaw` type is an esoteric niche use case primarily
used for accelerating the C API right now, so it's expected that not
many users will have to update for this change.
* Track down some more endianness conversions
Relevant to Wasmtime, this fixes undefined references to `utimensat` and
`futimens` on macOS 10.12 and earlier. See bytecodealliance/rustix#157
for details.
It also contains a fix for s390x which isn't currently needed by Wasmtime
itself, but which is needed to make rustix's own testsuite pass on s390x,
which helps people packaging rustix for use in Wasmtime. See
bytecodealliance/rustix#277 for details.
* Upgrade all crates to the Rust 2021 edition
I've personally started using the new format strings for things like
`panic!("some message {foo}")` or similar and have been upgrading crates
on a case-by-case basis, but I think it probably makes more sense to go
ahead and blanket upgrade everything so 2021 features are always
available.
* Fix compile of the C API
* Fix a warning
* Fix another warning
* Bump to 0.36.0
* Add a two-week delay to Wasmtime's release process
This commit is a proposal to update Wasmtime's release process with a
two-week delay from branching a release until it's actually officially
released. We've had two issues lately that came up which led to this proposal:
* In #3915 it was realized that changes just before the 0.35.0 release
weren't enough for an embedding use case, but the PR didn't meet the
expectations for a full patch release.
* At Fastly we were about to start rolling out a new version of Wasmtime
when over the weekend the fuzz bug #3951 was found. This led to the
desire internally to have a "must have been fuzzed for this long"
period of time for Wasmtime changes which we felt were better
reflected in the release process itself rather than something about
Fastly's own integration with Wasmtime.
This commit updates the automation for releases to unconditionally
create a `release-X.Y.Z` branch on the 5th of every month. The actual
release from this branch is then performed on the 20th of every month,
roughly two weeks later. This should provide a period of time to ensure
that all changes in a release are fuzzed for at least two weeks and
avoid any further surprises. This should also help with any last-minute
changes made just before a release if they need tweaking since
backporting to a not-yet-released branch is much easier.
Overall there are some new properties about Wasmtime with this proposal
as well:
* The `main` branch will always have a section in `RELEASES.md` which is
listed as "Unreleased" for us to fill out.
* The `main` branch will always be a version ahead of the latest
release. For example it will be bump pre-emptively as part of the
release process on the 5th where if `release-2.0.0` was created then
the `main` branch will have 3.0.0 Wasmtime.
* Dates for major versions are automatically updated in the
`RELEASES.md` notes.
The associated documentation for our release process is updated and the
various scripts should all be updated now as well with this commit.
* Add notes on a security patch
* Clarify security fixes shouldn't be previewed early on CI
This splits the existing `lookup_by_declaration` function into a
lookup-per-type-of-item. This refactor ends up cleaning up a fair bit of
code in the `wasmtime` crate by removing a number of `unreachable!()`
blocks which are now no longer necessary.
* Update to rustix 0.33.5, to fix a link error on Android
This updates to rustix 0.33.5, which includes bytecodealliance/rustix#258,
which fixes bytecodealliance/rustix#256, a link error on Android.
Fixes#3965.
* Bump the rustix versions in the Cargo.toml files too.
* Remove the module linking implementation in Wasmtime
This commit removes the experimental implementation of the module
linking WebAssembly proposal from Wasmtime. The module linking is no
longer intended for core WebAssembly but is instead incorporated into
the component model now at this point. This means that very large parts
of Wasmtime's implementation of module linking are no longer applicable
and would change greatly with an implementation of the component model.
The main purpose of this is to remove Wasmtime's reliance on the support
for module-linking in `wasmparser` and tooling crates. With this
reliance removed we can move over to the `component-model` branch of
`wasmparser` and use the updated support for the component model.
Additionally given the trajectory of the component model proposal the
embedding API of Wasmtime will not look like what it looks like today
for WebAssembly. For example the core wasm `Instance` will not change
and instead a `Component` is likely to be added instead.
Some more rationale for this is in #3941, but the basic idea is that I
feel that it's not going to be viable to develop support for the
component model on a non-`main` branch of Wasmtime. Additionaly I don't
think it's viable, for the same reasons as `wasm-tools`, to support the
old module linking proposal and the new component model at the same
time.
This commit takes a moment to not only delete the existing module
linking implementation but some abstractions are also simplified. For
example module serialization is a bit simpler that there's only one
module. Additionally instantiation is much simpler since the only
initializer we have to deal with are imports and nothing else.
Closes#3941
* Fix doc link
* Update comments
* Support disabling backtraces at compile time
This commit adds support to Wasmtime to disable, at compile time, the
gathering of backtraces on traps. The `wasmtime` crate now sports a
`wasm-backtrace` feature which, when disabled, will mean that backtraces
are never collected at compile time nor are unwinding tables inserted
into compiled objects.
The motivation for this commit stems from the fact that generating a
backtrace is quite a slow operation. Currently backtrace generation is
done with libunwind and `_Unwind_Backtrace` typically found in glibc or
other system libraries. When thousands of modules are loaded into the
same process though this means that the initial backtrace can take
nearly half a second and all subsequent backtraces can take upwards of
hundreds of milliseconds. Relative to all other operations in Wasmtime
this is extremely expensive at this time. In the future we'd like to
implement a more performant backtrace scheme but such an implementation
would require coordination with Cranelift and is a big chunk of work
that may take some time, so in the meantime if embedders don't need a
backtrace they can still use this option to disable backtraces at
compile time and avoid the performance pitfalls of collecting
backtraces.
In general I tried to originally make this a runtime configuration
option but ended up opting for a compile-time option because `Trap::new`
otherwise has no arguments and always captures a backtrace. By making
this a compile-time option it was possible to configure, statically, the
behavior of `Trap::new`. Additionally I also tried to minimize the
amount of `#[cfg]` necessary by largely only having it at the producer
and consumer sites.
Also a noteworthy restriction of this implementation is that if
backtrace support is disabled at compile time then reference types
support will be unconditionally disabled at runtime. With backtrace
support disabled there's no way to trace the stack of wasm frames which
means that GC can't happen given our current implementation.
* Always enable backtraces for the C API
* Delete historical interruptable support in Wasmtime
This commit removes the `Config::interruptable` configuration along with
the `InterruptHandle` type from the `wasmtime` crate. The original
support for adding interruption to WebAssembly was added pretty early on
in the history of Wasmtime when there was no other method to prevent an
infinite loop from the host. Nowadays, however, there are alternative
methods for interruption such as fuel or epoch-based interruption.
One of the major downsides of `Config::interruptable` is that even when
it's not enabled it forces an atomic swap to happen when entering
WebAssembly code. This technically could be a non-atomic swap if the
configuration option isn't enabled but that produces even more branch-y
code on entry into WebAssembly which is already something we try to
optimize. Calling into WebAssembly is on the order of a dozens of
nanoseconds at this time and an atomic swap, even uncontended, can add
up to 5ns on some platforms.
The main goal of this PR is to remove this atomic swap on entry into
WebAssembly. This is done by removing the `Config::interruptable` field
entirely, moving all existing consumers to epochs instead which are
suitable for the same purposes. This means that the stack overflow check
is no longer entangled with the interruption check and perhaps one day
we could continue to optimize that further as well.
Some consequences of this change are:
* Epochs are now the only method of remote-thread interruption.
* There are no more Wasmtime traps that produces the `Interrupted` trap
code, although we may wish to move future traps to this so I left it
in place.
* The C API support for interrupt handles was also removed and bindings
for epoch methods were added.
* Function-entry checks for interruption are a tiny bit less efficient
since one check is performed for the stack limit and a second is
performed for the epoch as opposed to the `Config::interruptable`
style of bundling the stack limit and the interrupt check in one. It's
expected though that this is likely to not really be measurable.
* The old `VMInterrupts` structure is renamed to `VMRuntimeLimits`.
This commit removes some `.unwrap()` annotations around casts between
integers to either be infallible or handle errors. This fixes a panic in
a fuzz test case that popped out for memory64-using modules. The actual
issue here is pretty benign, we were just too eager about assuming
things fit into 32-bit.
* Shrink the size of the anyfunc table in `VMContext`
This commit shrinks the size of the `VMCallerCheckedAnyfunc` table
allocated into a `VMContext` to be the size of the number of "escaped"
functions in a module rather than the number of functions in a module.
Escaped functions include exports, table elements, etc, and are
typically an order of magnitude smaller than the number of functions in
general. This should greatly shrink the `VMContext` for some modules
which while we aren't necessarily having any problems with that today
shouldn't cause any problems in the future.
The original motivation for this was that this came up during the recent
lazy-table-initialization work and while it no longer has a direct
performance benefit since tables aren't initialized at all on
instantiation it should still improve long-running instances
theoretically with smaller `VMContext` allocations as well as better
locality between anyfuncs.
* Fix some tests
* Remove redundant hash set
* Use a helper for pushing function type information
* Use a more descriptive `is_escaping` method
* Clarify a comment
* Fix condition
* Remove the `ModuleLimits` pooling configuration structure
This commit is an attempt to improve the usability of the pooling
allocator by removing the need to configure a `ModuleLimits` structure.
Internally this structure has limits on all forms of wasm constructs but
this largely bottoms out in the size of an allocation for an instance in
the instance pooling allocator. Maintaining this list of limits can be
cumbersome as modules may get tweaked over time and there's otherwise no
real reason to limit the number of globals in a module since the main
goal is to limit the memory consumption of a `VMContext` which can be
done with a memory allocation limit rather than fine-tuned control over
each maximum and minimum.
The new approach taken in this commit is to remove `ModuleLimits`. Some
fields, such as `tables`, `table_elements` , `memories`, and
`memory_pages` are moved to `InstanceLimits` since they're still
enforced at runtime. A new field `size` is added to `InstanceLimits`
which indicates, in bytes, the maximum size of the `VMContext`
allocation. If the size of a `VMContext` for a module exceeds this value
then instantiation will fail.
This involved adding a few more checks to `{Table, Memory}::new_static`
to ensure that the minimum size is able to fit in the allocation, since
previously modules were validated at compile time of the module that
everything fit and that validation no longer happens (it happens at
runtime).
A consequence of this commit is that Wasmtime will have no built-in way
to reject modules at compile time if they'll fail to be instantiated
within a particular pooling allocator configuration. Instead a module
must attempt instantiation see if a failure happens.
* Fix benchmark compiles
* Fix some doc links
* Fix a panic by ensuring modules have limited tables/memories
* Review comments
* Add back validation at `Module` time instantiation is possible
This allows for getting an early signal at compile time that a module
will never be instantiable in an engine with matching settings.
* Provide a better error message when sizes are exceeded
Improve the error message when an instance size exceeds the maximum by
providing a breakdown of where the bytes are all going and why the large
size is being requested.
* Try to fix test in qemu
* Flag new test as 64-bit only
Sizes are all specific to 64-bit right now
This commit fixes a potential issue where the fast-path instantiate in
`MemoryImageSlot` where when the previous image is compared against the
new image it only performed file descriptor equality, but nowadays with
loading images from `*.cwasm` files there might be multiple images in
the same file so the offsets also need to be considered. I think this
isn't really easy to hit today, it would require combining both module
linking and multi-memory which gets into the realm of being pretty
esoteric so I haven't added a test case here for this.
* Panic on resetting image slots back to anonymous memory
This commit updates `Drop for MemoryImageSlot` to panic instead of
ignoring errors when resetting memory back to a clean slate. On reading
some of this code again for a different change I realized that if an
error happens in `reset_with_anon_memory` it would be possible,
depending on where another error happened, to leak memory from one image
to another.
For example if `clear_and_remain_ready` failed its `madvise` (for
whatever reason) and didn't actually reset any memory, then if `Drop for
MemoryImageSlot` also hit an error trying to remap memory (for whatever
reason), then nothing about memory has changed and when the
`MemoryImageSlot` is recreated it'll think that it's 0-length when
actually it's a bit larger and may leak data.
I don't think this is a serious problem since we don't know any
situation under which the `madvise` would fail and/or the resetting with
anonymous memory, but given that these aren't expected to fail I figure
it's best to be a bit more defensive here and/or loud about failures.
* Update a comment
* Enable copy-on-write heap initialization by default
This commit enables the `Config::memfd` feature by default now that it's
been fuzzed for a few weeks on oss-fuzz, and will continue to be fuzzed
leading up to the next release of Wasmtime in early March. The
documentation of the `Config` option has been updated as well as adding
a CLI flag to disable the feature.
* Remove ubiquitous "memfd" terminology
Switch instead to forms of "memory image" or "cow" or some combination
thereof.
* Update new option names
* Port fix for `CVE-2022-23636` to `main`.
This commit ports the fix for `CVE-2022-23636` to `main`, but performs a
refactoring that makes it unnecessary for the instance itself to track if it
has been initialized; such a change was not targeted enough for a security
patch.
The pooling allocator will now only initialize an instance if all of its
associated resource creation succeeds. If the resource creation fails, no
instance is dropped as none was initialized.
Also updates `RELEASES.md` to include the related patch releases.
* Add `Instance::new_at` to fully initialize an instance.
Added `Instance::new_at` to fully initialize an instance at a given address.
This will hopefully prevent the possibility that an `Instance` structure
doesn't have an initialized `VMContext` when it is dropped.
* Shrink the size of `FuncData`
Before this commit on a 64-bit system the `FuncData` type had a size of
88 bytes and after this commit it has a size of 32 bytes. A `FuncData`
is required for all host functions in a store, including those inserted
from a `Linker` into a store used during linking. This means that
instantiation ends up creating a nontrivial number of these types and
pushing them into the store. Looking at some profiles there were some
surprisingly expensive movements of `FuncData` from the stack to a
vector for moves-by-value generated by Rust. Shrinking this type enables
more efficient code to be generated and additionally means less storage
is needed in a store's function array.
For instantiating the spidermonkey and rustpython modules this improves
instantiation by 10% since they each import a fair number of host
functions and the speedup here is relative to the number of items
imported.
* Use `ptr::copy_nonoverlapping` during initialization
Prevoiusly `ptr::copy` was used for copying imports into place which
translates to `memmove`, but `ptr::copy_nonoverlapping` can be used here
since it's statically known these areas don't overlap. While this
doesn't end up having a performance difference it's something I kept
noticing while looking at the disassembly of `initialize_vmcontext` so I
figured I'd go ahead and implement.
* Indirect shared signature ids in the VMContext
This commit is a small improvement for the instantiation time of modules
by avoiding copying a list of `VMSharedSignatureIndex` entries into each
`VMContext`, instead building one inside of a module and sharing that
amongst all instances. This involves less lookups at instantiation time
and less movement of data during instantiation. The downside is that
type-checks on `call_indirect` now involve an additionally load, but I'm
assuming that these are somewhat pessimized enough as-is that the
runtime impact won't be much there.
For instantiation performance this is a 5-10% win with
rustpyhon/spidermonky instantiation. This should also reduce the size of
each `VMContext` for an instantiation since signatures are no longer
stored inline but shared amongst all instances with one module.
Note that one subtle change here is that the array of
`VMSharedSignatureIndex` was previously indexed by `TypeIndex`, and now
it's indexed by `SignaturedIndex` which is a deduplicated form of
`TypeIndex`. This is done because we already had a list of those lying
around in `Module`, so it was easier to reuse that than to build a
separate array and store it somewhere.
* Reserve space in `Store<T>` with `InstancePre`
This commit updates the instantiation process to reserve space in a
`Store<T>` for the functions that an `InstancePre<T>`, as part of
instantiation, will insert into it. Using an `InstancePre<T>` to
instantiate allows pre-computing the number of host functions that will
be inserted into a store, and by pre-reserving space we can avoid costly
reallocations during instantiation by ensuring the function vector has
enough space to fit everything during the instantiation process.
Overall this makes instantiation of rustpython/spidermonkey about 8%
faster locally.
* Fix tests
* Use checked arithmetic