Introduce a new concept in the IR that allows a producer to create
dynamic vector types. An IR function can now contain global value(s)
that represent a dynamic scaling factor, for a given fixed-width
vector type. A dynamic type is then created by 'multiplying' the
corresponding global value with a fixed-width type. These new types
can be used just like the existing types and the type system has a
set of hard-coded dynamic types, such as I32X4XN, which the user
defined types map onto. The dynamic types are also used explicitly
to create dynamic stack slots, which have no set size like their
existing counterparts. New IR instructions are added to access these
new stack entities.
Currently, during codegen, the dynamic scaling factor has to be
lowered to a constant so the dynamic slots do eventually have a
compile-time known size, as do spill slots.
The current lowering for aarch64 just targets Neon, using a dynamic
scale of 1.
Copyright (c) 2022, Arm Limited.
* cranelift: Fix `bint` implementation on interpreter
The interpreter was returning -1 instead of 1 for positive values.
This also extends the bint test suite to cover all types.
* cranelift: Restrict `bint` to scalar values only
In #4104 we discussed whether it makes sense for the division and
remainder ops to support vector types. We concluded that because most
hardware doesn't support it directly, it probably is not ideal to force
all backends to polyfill it. In the future we can always reverse this
decision, perhaps with a platform-independent legalization.
This PR restricts the allowed types on the CLIF ops to integer types
only.
Currently, we have partial Spectre mitigation: we protect heap accesses
with dynamic bounds checks. Specifically, we guard against errant
accesses on the misspeculated path beyond the bounds-check conditional
branch by adding a conditional move that is also dependent on the
bounds-check condition. This data dependency on the condition is not
speculated and thus will always pick the "safe" value (in the heap case,
a NULL address) on the misspeculated path, until the pipeline flushes
and recovers onto the correct path.
This PR uses the same technique both for table accesses -- used to
implement Wasm tables -- and for jumptables, used to implement Wasm
`br_table` instructions.
In the case of Wasm tables, the cmove picks the table base address on
the misspeculated path. This is equivalent to reading the first table
entry. This prevents loads of arbitrary data addresses on the
misspeculated path.
In the case of `br_table`, the cmove picks index 0 on the misspeculated
path. This is safer than allowing a branch to an address loaded from an
index under misspeculation (i.e., it preserves control-flow integrity
even under misspeculation).
The table mitigation is controlled by a Cranelift setting, on by
default. The br_table mitigation is always on, because it is part of the
single lowering pseudoinstruction. In both cases, the impact should be
minimal: a single extra cmove in a (relatively) rarely-used operation.
The table mitigation is architecture-independent (happens during
legalization); the br_table mitigation has been implemented for both x64
and aarch64. (I don't know enough about s390x to implement this
confidently there, but would happily review a PR to do the same on that
platform.)
With these fixes, all this PR has to do is instantiate and run the
checker on the `regalloc2::Output`. This is off by default, and is
enabled by setting the `regalloc_checker` Cranelift option.
This restores the old functionality provided by e.g. the
`backtracking_checked` regalloc algorithm setting rather than
`backtracking` when we were still on regalloc.rs.
This PR switches Cranelift over to the new register allocator, regalloc2.
See [this document](https://gist.github.com/cfallin/08553421a91f150254fe878f67301801)
for a summary of the design changes. This switchover has implications for
core VCode/MachInst types and the lowering pass.
Overall, this change brings improvements to both compile time and speed of
generated code (runtime), as reported in #3942:
```
Benchmark Compilation (wallclock) Execution (wallclock)
blake3-scalar 25% faster 28% faster
blake3-simd no diff no diff
meshoptimizer 19% faster 17% faster
pulldown-cmark 17% faster no diff
bz2 15% faster no diff
SpiderMonkey, 21% faster 2% faster
fib(30)
clang.wasm 42% faster N/A
```
This change removes all variants of `load*_complex` and `store*_complex`
from Cranelift; this is a breaking change to the instructions exposed by
CLIF. The complete list of instructions removed is: `load_complex`,
`store_complex`, `uload8_complex`, `sload8_complex`, `istore8_complex`,
`sload8_complex`, `uload16_complex`, `sload16_complex`,
`istore16_complex`, `uload32_complex`, `sload32_complex`,
`istore32_complex`, `uload8x8_complex`, `sload8x8_complex`,
`sload16x4_complex`, `uload16x4_complex`, `uload32x2_complex`,
`sload32x2_complex`.
The rationale for this removal is that the Cranelift backend now has the
ability to pattern-match multiple upstream additions in order to
calculate the address to access. Previously, this was not possible so
the `*_complex` instructions were needed. Over time, these instructions
have fallen out of use in this repository, making the additional
overhead of maintaining them a chore.
Looking at [the `fcmp`
documentation](https://docs.rs/cranelift-codegen/0.80.0/cranelift_codegen/ir/trait.InstBuilder.html#method.fcmp)--generated
from Cranelift's instruction definitions, the charts explaining the
logic for the various conditions is unreadable. Since rendering those charts
as plain text is problematic, this change wraps them as code sections
for a consistent layout.
This opcode was removed as part of the old-backend cleanup in #3446.
While this opcode will definitely go away eventually, it is
unfortunately still used today in Lucet (as we just discovered while
working to upgrade Lucet's pinned Cranelift version). Lucet is
deprecated and slated to eventually be completely sunset in favor of
Wasmtime; but until that happens, we need to keep this opcode.
This also paves the way for unifying TargetIsa and MachBackend, since now they map one to one. In theory the two traits could be merged, which would be nice to limit the number of total concepts. Also they have quite different responsibilities, so it might be fine to keep them separate.
Interestingly, this PR started as removing RegInfo from the TargetIsa trait since the adapter returned a dummy value there. From the fallout, noticed that all Display implementations didn't needed an ISA anymore (since these were only used to render ISA specific registers). Also the whole family of RegInfo / ValueLoc / RegUnit was exclusively used for the old backend, and these could be removed. Notably, some IR instructions needed to be removed, because they were using RegUnit too: this was the oddball of regfill / regmove / regspill / copy_special, which were IR instructions inserted by the old regalloc. Fare thee well!
Implemented `Smulhi` for the Cranelift interpreter, performing signed
integer multiplication and producing the high half of a double-length
result.
Copyright (c) 2021, Arm Limited
Implemented the following Opcodes for the Cranelift interpreter:
- `Unarrow` to combine two SIMD vectors into a new vector with twice
the lanes but half the width, with signed inputs which are clamped to
`0x00`.
- `Uunarrow` to perform the same operation as `Unarrow` but treating
inputs as unsigned.
- `Snarrow` to perform the same operation as `Unarrow` but treating
both inputs and outputs as signed, and saturating accordingly.
Note that all 3 instructions saturate at the type boundaries.
Copyright (c) 2021, Arm Limited
- Fixed CI tests for AArch64 and old x86.
- Rename `simd-umulhi.clif` to `umulhi.clif`.
- Rename `simd-umulhi-aarch64.clif` to `simd-umulhi.clif`.
Copyright (c) 2021, Arm Limited.
The tests for the SIMD floating-point maximum and minimum operations
require particular care because the handling of the NaN values is
non-deterministic and may vary between platforms. There is no way to
match several NaN values in a test, so the solution is to extract the
non-deterministic test cases into a separate file that is subsequently
replicated for every backend under test, with adjustments made to the
expected results.
Copyright (c) 2021, Arm Limited.
Also, reorganize the AArch64-specific VCode instructions for unary
narrowing and widening vector operations, so that they are more
straightforward to use.
Copyright (c) 2021, Arm Limited.
* Add support for x64 packed promote low
* Add support for x64 packed floating point demote
* Update vector promote low and demote by adding constraints
Also does some renaming and minor refactoring
This commit adds the `wasmtime settings` command to print out available
Cranelift settings for a target (defaults to the host).
The compile command has been updated to remove the Cranelift ISA options in
favor of encouraging users to use `wasmtime settings` to discover what settings
are available. This will reduce the maintenance cost for syncing the compile
command with Cranelift ISA flags.
This bumps target-lexicon and adds support for the AppleAarch64 calling
convention. Specifically for WebAssembly support, we only have to worry
about the new stack slots convention. Stack slots don't need to be at
least 8-bytes, they can be as small as the data type's size. For
instance, if we need stack slots for (i32, i32), they can be located at
offsets (+0, +4). Note that they still need to be properly aligned on
the data type they're containing, though, so if we need stack slots for
(i32, i64), we can't start the i64 slot at the +4 offset (it must start
at the +8 offset).
Added one test that was failing on the Mac M1, as well as other tests
stressing different yet similar situations.
Our previous implementation of unwind infrastructure was somewhat
complex and brittle: it parsed generated instructions in order to
reverse-engineer unwind info from prologues. It also relied on some
fragile linkage to communicate instruction-layout information that VCode
was not designed to provide.
A much simpler, more reliable, and easier-to-reason-about approach is to
embed unwind directives as pseudo-instructions in the prologue as we
generate it. That way, we can say what we mean and just emit it
directly.
The usual reasoning that leads to the reverse-engineering approach is
that metadata is hard to keep in sync across optimization passes; but
here, (i) prologues are generated at the very end of the pipeline, and
(ii) if we ever do a post-prologue-gen optimization, we can treat unwind
directives as black boxes with unknown side-effects, just as we do for
some other pseudo-instructions today.
It turns out that it was easier to just build this for both x64 and
aarch64 (since they share a factored-out ABI implementation), and wire
up the platform-specific unwind-info generation for Windows and SystemV.
Now we have simpler unwind on all platforms and we can delete the old
unwind infra as soon as we remove the old backend.
There were a few consequences to supporting Fastcall unwind in
particular that led to a refactor of the common ABI. Windows only
supports naming clobbered-register save locations within 240 bytes of
the frame-pointer register, whatever one chooses that to be (RSP or
RBP). We had previously saved clobbers below the fixed frame (and below
nominal-SP). The 240-byte range has to include the old RBP too, so we're
forced to place clobbers at the top of the frame, just below saved
RBP/RIP. This is fine; we always keep a frame pointer anyway because we
use it to refer to stack args. It does mean that offsets of fixed-frame
slots (spillslots, stackslots) from RBP are no longer known before we do
regalloc, so if we ever want to index these off of RBP rather than
nominal-SP because we add support for `alloca` (dynamic frame growth),
then we'll need a "nominal-BP" mode that is resolved after regalloc and
clobber-save code is generated. I added a comment to this effect in
`abi_impl.rs`.
The above refactor touched both x64 and aarch64 because of shared code.
This had a further effect in that the old aarch64 prologue generation
subtracted from `sp` once to allocate space, then used stores to `[sp,
offset]` to save clobbers. Unfortunately the offset only has 7-bit
range, so if there are enough clobbered registers (and there can be --
aarch64 has 384 bytes of registers; at least one unit test hits this)
the stores/loads will be out-of-range. I really don't want to synthesize
large-offset sequences here; better to go back to the simpler
pre-index/post-index `stp r1, r2, [sp, #-16]` form that works just like
a "push". It's likely not much worse microarchitecturally (dependence
chain on SP, but oh well) and it actually saves an instruction if
there's no other frame to allocate. As a further advantage, it's much
simpler to understand; simpler is usually better.
This PR adds the new backend on Windows to CI as well.
This adds support for the "fastcall" ABI, which is the native C/C++ ABI
on Windows platforms on x86-64. It is similar to but not exactly like
System V; primarily, its argument register assignments are different,
and it requires stack shadow space.
Note that this also adjusts the handling of multi-register values in the
shared ABI implementation, and with this change, adjusts handling of
`i128`s on *both* Fastcall/x64 *and* SysV/x64 platforms. This was done
to align with actual behavior by the "rustc ABI" on both platforms, as
mapped out experimentally (Compiler Explorer link in comments). This
behavior is gated under the `enable_llvm_abi_extensions` flag.
Note also that this does *not* add x64 unwind info on Windows. That will
come in a future PR (but is planned!).