b48b10b2aafa513ef982877a58313522265c4b57
11 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
651f40855f |
Add support for nested components (#4285)
* Add support for nested components
This commit is an implementation of a number of features of the
component model including:
* Defining nested components
* Outer aliases to components and modules
* Instantiating nested components
The implementation here is intended to be a foundational pillar of
Wasmtime's component model support since recursion and nested components
are the bread-and-butter of the component model. At a high level the
intention for the component model implementation in Wasmtime has long
been that the recursive nature of components is "erased" at compile time
to something that's more optimized and efficient to process. This commit
ended up exemplifying this quite well where the vast majority of the
internal changes here are in the "compilation" phase of a component
rather than the runtime instantiation phase. The support in the
`wasmtime` crate, the runtime instantiation support, only had minor
updates here while the internals of translation have seen heavy updates.
The `translate` module was greatly refactored here in this commit.
Previously it would, as a component is parsed, create a final
`Component` to hand off to trampoline compilation and get persisted at
runtime. Instead now it's a thin layer over `wasmparser` which simply
records a list of `LocalInitializer` entries for how to instantiate the
component and its index spaces are built. This internal representation
of the instantiation of a component is pretty close to the binary format
intentionally.
Instead of performing dataflow legwork the `translate` phase of a
component is now responsible for two primary tasks:
1. All components and modules are discovered within a component. They're
assigned `Static{Component,Module}Index` depending on where they're
found and a `{Module,}Translation` is prepared for each one. This
"flattens" the recursive structure of the binary into an indexed list
processable later.
2. The lexical scope of components is managed here to implement outer
module and component aliases. This is a significant design
implementation because when closing over an outer component or module
that item may actually be imported or something like the result of a
previous instantiation. This means that the capture of
modules and components is both a lexical concern as well as a runtime
concern. The handling of the "runtime" bits are handled in the next
phase of compilation.
The next and currently final phase of compilation is a new pass where
much of the historical code in `translate.rs` has been moved to (but
heavily refactored). The goal of compilation is to produce one "flat"
list of initializers for a component (as happens prior to this PR) and
to achieve this an "inliner" phase runs which runs through the
instantiation process at compile time to produce a list of initializers.
This `inline` module is the main addition as part of this PR and is now
the workhorse for dataflow analysis and tracking what's actually
referring to what.
During the `inline` phase the local initializers recorded in the
`translate` phase are processed, in sequence, to instantiate a
component. Definitions of items are tracked to correspond to their root
definition which allows seeing across instantiation argument boundaries
and such. Handling "upvars" for component outer aliases is handled in
the `inline` phase as well by creating state for a component whenever a
component is defined as was recorded during the `translate` phase.
Finally this phase is chiefly responsible for doing all string-based
name resolution at compile time that it can. This means that at runtime
no string maps will need to be consulted for item exports and such.
The final result of inlining is a list of "global initializers" which is
a flat list processed during instantiation time. These are almost
identical to the initializers that were processed prior to this PR.
There are certainly still more gaps of the component model to implement
but this should be a major leg up in terms of functionality that
Wasmtime implements. This commit, however leaves behind a "hole" which
is not intended to be filled in at this time, namely importing and
exporting components at the "root" level from and to the host. This is
tracked and explained in more detail as part of #4283.
cc #4185 as this completes a number of items there
* Tweak code to work on stable without warning
* Review comments
|
||
|
|
7d7ddceb17 |
Update wasm-tools crates (#4246)
This commit updates the wasm-tools family of crates, notably pulling in the refactorings and updates from bytecodealliance/wasm-tools#621 for the latest iteration of the component model. This commit additionally updates all support for the component model for these changes, notably: * Many bits and pieces of type information was refactored. Many `FooTypeIndex` namings are now `TypeFooIndex`. Additionally there is now `TypeIndex` as well as `ComponentTypeIndex` for the two type index spaces in a component. * A number of new sections are now processed to handle the core and component variants. * Internal maps were split such as the `funcs` map into `component_funcs` and `funcs` (same for `instances`). * Canonical options are now processed individually instead of one bulk `into` definition. Overall this was not a major update to the internals of handling the component model in Wasmtime. Instead this was mostly a surface-level refactoring to make sure that everything lines up with the new binary format for components. * All text syntax used in tests was updated to the new syntax. |
||
|
|
088e568f22 |
Accept (tuple) and unit as () in Rust (#4241)
This commit updates the implementation of `ComponentType for ()` to typecheck both the empty tuple type in addition to the `unit` type in the component model. This allows the usage of `()` when either of those types are used. Currently this can work because we don't need to currently support the answer of "what is the type of this host function". Instead the only question that needs to be answered at runtime is "does this host function match this type". |
||
|
|
0b4448a423 |
Validate alignment in the canonical ABI (#4238)
This commit updates the lifting and lowering done by Wasmtime to validate that alignment is all correct. Previously alignment was ignored because I wasn't sure how this would all work out. To be extra safe I haven't actually modified any loads/stores and they're all still unaligned. If this becomes a performance issue we can investigate aligned loads and stores but otherwise I believe the requisite locations have been guarded with traps and I've also added debug asserts to catch possible future mistakes. |
||
|
|
479def00b9 |
Update lifting for integers and bools (#4237)
This commit updates lifting for integer types and boolean types to account for WebAssembly/component-model#35 where extra bits are now discarded instead of being validated as all zero. |
||
|
|
11ff9650e5 |
Split the ComponentValue trait into... components (#4236)
This commit splits the current `ComponentValue` trait into three separate traits: * `ComponentType` - contains size/align/typecheck information in addition to the "lower" representation. * `Lift` - only contains `lift` and `load` * `Lower` - only contains `lower` and `store` When describing the original implementation of host functions to Nick he immediately pointed out this superior solution to the traits involved with Wasmtime's support for typed parameters/returns in exported and imported functions. Instead of having dynamic errors at runtime for things like "you can't lift a `String`" that's instead a static compile-time error now. While I was doing this split I also refactored the `ComponentParams` trait a bit to have `ComponentType` as a supertrait instead of a subtype which made its implementations a bit more compact. Additionally its impl blocks were folded into the existing tuple impl blocks. |
||
|
|
20f510671d |
Enable passing host functions to components (#4219)
* Enable passing host functions to components
This commit implements the ability to pass a host function into a
component. The `wasmtime::component::Linker` type now has a `func_wrap`
method allowing it to take a host function which is exposed internally
to the component and available for lowering.
This is currently mostly a "let's get at least the bare minimum working"
implementation. That involves plumbing around lots of various bits of
the canonical ABI and getting all the previous PRs to line up in this
one to get a test where we call a function where the host takes a
string. This PR also additionally starts reading and using the
`may_{enter,leave}` flags since this is the first time they're actually
relevant.
Overall while this is the bare bones of working this is not a final spot
we should end up at. One of the major downsides is that host functions
are represented as:
F: Fn(StoreContextMut<'_, T>, Arg1, Arg2, ...) -> Result<Return>
while this naively seems reasonable this critically doesn't allow
`Return` to actually close over any of its arguments. This means that if
you want to return a string to wasm then it has to be `String` or
`Rc<str>` or some other owned type. In the case of `String` this means
that to return a string to wasm you first have to copy it from the host
to a temporary `String` allocation, then to wasm. This extra copy for
all strings/lists is expected to be prohibitive. Unfortuantely I don't
think Rust is able to solve this, at least on stable, today.
Nevertheless I wanted to at least post this to get some feedback on it
since it's the final step in implementing host imports to see how others
feel about it.
* Fix a typo in an assertion
* Fix some typos
* Review comments
|
||
|
|
3ed6fae7b3 |
Add trampoline compilation support for lowered imports (#4206)
* Add trampoline compilation support for lowered imports This commit adds support to the component model implementation for compiling trampolines suitable for calling host imports. Currently this is purely just the compilation side of things, modifying the wasmtime-cranelift crate and additionally filling out a new `VMComponentOffsets` type (similar to `VMOffsets`). The actual creation of a `VMComponentContext` is still not performed and will be a subsequent PR. Internally though some tests are actually possible with this where we at least assert that compilation of a component and creation of everything in-memory doesn't panic or trip any assertions, so some tests are added here for that as well. * Fix some test errors |
||
|
|
b49c5c878e |
Implement module imports into components (#4208)
* Implement module imports into components As a step towards implementing function imports into a component this commit implements importing modules into a component. This fills out missing pieces of functionality such as exporting modules as well. The previous translation code had initial support for translating imported modules but some of the AST type information was restructured with feedback from this implementation, namely splitting the `InstantiateModule` initializer into separate upvar/import variants to clarify that the item orderings for imports are resolved differently at runtime. Much of this commit is also adding infrastructure for any imports at all into a component. For example a `Linker` type (analagous to `wasmtime::Linker`) was added here as well. For now this type is quite limited due to the inability to define host functions (it can only work with instances and instances-of-modules) but it's enough to start writing `*.wast` tests which exercise lots of module-related functionality. * Fix a warning |
||
|
|
d5ce51e8d1 |
Redesign interface type value representation (#4198)
Prior to this PR a major feature of calling component exports (#4039) was the usage of the `Value<T>` type. This type represents a value stored in wasm linear memory (the type `T` stored there). This implementation had a number of drawbacks though: * When returning a value it's ABI-specific whether you use `T` or `Value<T>` as a return value. If `T` is represented with one wasm primitive then you have to return `T`, otherwise the return value must be `Value<T>`. This is somewhat non-obvious and leaks ABI-details into the API which is unfortunate. * The `T` in `Value<T>` was somewhat non-obvious. For example a wasm-owned string was `Value<String>`. Using `Value<&str>` didn't work. * Working with `Value<T>` was unergonomic in the sense that you had to first "pair" it with a `&Store<U>` to get a `Cursor<T>` and then you could start reading the value. * Custom structs and enums, while not implemented yet, were planned to be quite wonky where when you had `Cursor<MyStruct>` then you would have to import a `CursorMyStructExt` trait generated by a proc-macro (think a `#[derive]` on the definition of `MyStruct`) which would enable field accessors, returning cursors of all the fields. * In general there was no "generic way" to load a `T` from memory. Other operations like lift/lower/store all had methods in the `ComponentValue` trait but load had no equivalent. None of these drawbacks were deal-breakers per-se. When I started to implement imported functions, though, the `Value<T>` type no longer worked. The major difference between imports and exports is that when receiving values from wasm an export returns at most one wasm primitive where an import can yield (through arguments) up to 16 wasm primitives. This means that if an export returned a string it would always be `Value<String>` but if an import took a string as an argument there was actually no way to represent this with `Value<String>` since the value wasn't actually stored in memory but rather the pointer/length pair is received as arguments. Overall this meant that `Value<T>` couldn't be used for arguments-to-imports, which means that altogether something new would be required. This PR completely removes the `Value<T>` and `Cursor<T>` type in favor of a different implementation. The inspiration from this comes from the fact that all primitives can be both lifted and lowered into wasm while it's just some times which can only go one direction. For example `String` can be lowered into wasm but can't be lifted from wasm. Instead some sort of "view" into wasm needs to be created during lifting. One of the realizations from #4039 was that we could leverage run-time-type-checking to reject static constructions that don't make sense. For example if an embedder asserts that a wasm function returns a Rust `String` we can reject that at typechecking time because it's impossible for a wasm module to ever do that. The new system of imports/exports in this PR now looks like: * Type-checking takes into accont an `Op` operation which indicates whether we'll be lifting or lowering the type. This means that we can allow the lowering operation for `String` but disallow the lifting operation. While we can't statically rule out an embedder saying that a component returns a `String` we can now reject it at runtime and disallow it from being called. * The `ComponentValue` trait now sports a new `load` function. This function will load and instance of `Self` from the byte-array provided. This is implemented for all types but only ever actually executed when the `lift` operation is allowed during type-checking. * The `Lift` associated type is removed since it's now expected that the lift operation returns `Self`. * The `ComponentReturn` trait is now no longer necessary and is removed. Instead returns are bounded by `ComponentValue`. During type-checking it's required that the return value can be lifted, disallowing, for example, returning a `String` or `&str`. * With `Value` gone there's no need to specify the ABI details of the return value, or whether it's communicated through memory or not. This means that handling return values through memory is transparently handled by Wasmtime. * Validation is in a sense more eagerly performed now. Whenever a value `T` is loaded the entire immediate structure of `T` is loaded and validated. Note that recursive through memory validation still does not happen, so the contents of lists or strings aren't validated, it's just validated that the pointers are in-bounds. Overall this felt like a much clearer system to work with and should be much easier to integrate with imported functions as well. The new `WasmStr` and `WasmList<T>` types can be used in import arguments and lifted from the immediate arguments provided rather than forcing them to always be stored in memory. |
||
|
|
140b83597b |
components: Implement the ability to call component exports (#4039)
* components: Implement the ability to call component exports This commit is an implementation of the typed method of calling component exports. This is intended to represent the most efficient way of calling a component in Wasmtime, similar to what `TypedFunc` represents today for core wasm. Internally this contains all the traits and implementations necessary to invoke component exports with any type signature (e.g. arbitrary parameters and/or results). The expectation is that for results we'll reuse all of this infrastructure except in reverse (arguments and results will be swapped when defining imports). Some features of this implementation are: * Arbitrary type hierarchies are supported * The Rust-standard `Option`, `Result`, `String`, `Vec<T>`, and tuple types all map down to the corresponding type in the component model. * Basic utf-16 string support is implemented as proof-of-concept to show what handling might look like. This will need further testing and benchmarking. * Arguments can be behind "smart pointers", so for example `&Rc<Arc<[u8]>>` corresponds to `list<u8>` in interface types. * Bulk copies from linear memory never happen unless explicitly instructed to do so. The goal of this commit is to create the ability to actually invoke wasm components. This represents what is expected to be the performance threshold for these calls where it ideally should be optimal how WebAssembly is invoked. One major missing piece of this is a `#[derive]` of some sort to generate Rust types for arbitrary `*.wit` types such as custom records, variants, flags, unions, etc. The current trait impls for tuples and `Result<T, E>` are expected to have fleshed out most of what such a derive would look like. There are some downsides and missing pieces to this commit and method of calling components, however, such as: * Passing `&[u8]` to WebAssembly is currently not optimal. Ideally this compiles down to a `memcpy`-equivalent somewhere but that currently doesn't happen due to all the bounds checks of copying data into memory. I have been unsuccessful so far at getting these bounds checks to be removed. * There is no finalization at this time (the "post return" functionality in the canonical ABI). Implementing this should be relatively straightforward but at this time requires `wasmparser` changes to catch up with the current canonical ABI. * There is no guarantee that results of a wasm function will be validated. As results are consumed they are validated but this means that if function returns an invalid string which the host doesn't look at then no trap will be generated. This is probably not the intended semantics of hosts in the component model. * At this time there's no support for memory64 memories, just a bunch of `FIXME`s to get around to. It's expected that this won't be too onerous, however. Some extra care will need to ensure that the various methods related to size/alignment all optimize to the same thing they do today (e.g. constants). * The return value of a typed component function is either `T` or `Value<T>`, and it depends on the ABI details of `T` and whether it takes up more than one return value slot or not. This is an ABI-implementation detail which is being forced through to the API layer which is pretty unfortunate. For example if you say the return value of a function is `(u8, u32)` then it's a runtime type-checking error. I don't know of a great way to solve this at this time. Overall I'm feeling optimistic about this trajectory of implementing value lifting/lowering in Wasmtime. While there are a number of downsides none seem completely insurmountable. There's naturally still a good deal of work with the component model but this should be a significant step up towards implementing and testing the component model. * Review comments * Write tests for calling functions This commit adds a new test file for actually executing functions and testing their results. This is not written as a `*.wast` test yet since it's not 100% clear if that's the best way to do that for now (given that dynamic signatures aren't supported yet). The tests themselves could all largely be translated to `*.wast` testing in the future, though, if supported. Along the way a number of minor issues were fixed with lowerings with the bugs exposed here. * Fix an endian mistake * Fix a typo and the `memory.fill` instruction |