This instruction behaves like icmp fused with brnz, and it can be used
to represent fused compare+branch instruction on Intel when optimizing
for macro-op fusion.
RISC-V provides compare-and-branch instructions directly, and it is
needed there too.
Compare a scalar integer to an immediate constant. Both Intel and RISC-V
ISAs have this operation.
This requires the addition of a new IntCompareImm instruction format.
These two instructions make sense for vector types by simply performing
the same operation on each lane, like most other vector operations.
Problem found by @angusholder's verifier.
When the legalizer splits a value into halves, it would previously stop
if the value was an EBB argument. With this change, we also split EBB
arguments and iteratively split arguments on branches to the EBB.
The iterative splitting stops when we hit the entry block arguments or
an instruction that isn't one of the concatenation instructions.
No instruction sets actually have single instructions for materializing
vector constants. You always need to use a constant pool.
Cretonne doesn't have constant pools yet, but it will in the future, and
that is how vector constants should be represented.
Instruction formats are now identified by a signature that doesn't
include the ordering of value operands relative to immediate operands.
This means that the BinaryRev instruction format becomes redundant, so
delete it. The isub_imm instruction was the only one using that format.
Rename it to irsub_imm to make it clear what it does now that it is
printed as 'irsub_imm v2, 45'.
Add support for two new type variable functions: half_vector() and
double_vector().
Use these two instructions to break down unsupported SIMD types and
build them up again.