* Remove reserved_reg functionality.
This wasn't implemented, and if we need it in the future, it seems like
it would be better to extend the concept of global values to cover this.
* Use GlobalValue::reserved_value() for sentinal values.
* Start adding the load_complex and store_complex instructions.
N.b.:
The text format is not correct yet. Requires changes to the lexer and parser.
I'm not sure why I needed to change the RuntimeError to Exception yet. Will fix.
* Get first few encodings of load_complex working. Still needs var args type checking.
* Clean up ModRM helper functions in binemit.
* Implement 32-bit displace for load_complex
* Use encoding helpers instead of doing them all by hand
* Initial implementation of store_complex
* Parse value list for load/store_complex with + as delimiter. Looks nice.
* Add sign/zero-extension and size variants for load_complex.
* Add size variants of store_complex.
* Add asm helper lines to load/store complex bin tests.
* Example of length-checking the instruction ValueList for an encoding. Extremely questionable implementation.
* Fix Python linting issues
* First draft of postopt pass to fold adds and loads into load_complex. Just simple loads for now.
* Optimization pass now works with all types of loads.
* Add store+add -> store_complex to postopt pass
* Put complex address optimization behind ISA flag.
* Add load/store complex for f32 and f64
* Fixes changes to lexer that broke NaN parsing.
Abstracts away the repeated checks for whether or not the characters
following a + or - are going to be parsed as a number or not.
* Fix formatting issues
* Fix register restrictions for complex addresses.
* Encoding tests for x86-32.
* Add documentation for newly added instructions, recipes, and cdsl changes.
* Fix python formatting again
* Apply value-list length predicates to all LoadComplex and StoreComplex instructions.
* Add predicate types to new encoding helpers for mypy.
* Import FieldPredicate to satisfy mypy.
* Add and fix some "asm" strings in the encoding tests.
* Line-up 'bin' comments in x86/binary64 test
* Test parsing of offset-less store_complex instruction.
* 'sNaN' not 'sNan'
* Bounds check the lookup for polymorphic typevar operand.
* Fix encodings for istore16_complex.
Add a calling-convention setting to the `Flags` used as part of the
`TargetIsa`. This allows Cretonne code that generates calls to use the
correct convention, such as when emitting libcalls during legalization
or when the wasm frontend is decoding functions. This setting can be
overridden per-function.
This also adds "fast", "cold", and "fastcall" conventions, with "fast"
as the new default. Note that "fast" and "cold" are not intended to be
ABI-compatible across Cretonne versions.
This will also ensure Windows users will get an `unimplemented!` rather
than silent calling-convention mismatches, which reflects the fact that
Windows calling conventions are not yet implemented.
This also renames SpiderWASM, which isn't camel-case, to Baldrdash,
which is, and which is also a more relevant name.
This adds a "colocated" flag to function and symbolic global variables which
indicates that they are defined along with the current function, so they can
use PC-relative addressing.
This also changes the function decl syntax; the name now always precedes the
signature, and the "function" keyword is no longer included.
To keep cross-compiling straightforward, Cretonne shouldn't have any
behavior that depends on the host. This renames the "Native" calling
convention to "SystemV", which has a defined meaning for each target,
so that it's clear that the calling convention doesn't change
depending on what host Cretonne is running on.
While the specifics of these terms are debatable, "IR" generally
isn't incorrect in this context, and is the more widely recognized
term at this time.
See also the discussion in #267.
Fixes#267.
Mark loads from globals generated by cton_wasm or by legalization as
`aligned` and `notrap`, since memory for these globals should be
allocated by the runtime environment for that purpose. This reduces
the number of potentially trapping instructions, which can reduce
the amount of metadata required by embedding environments.
The term "local variables" predated the SSA builder in the front-end
crate, which also provides a way to implement source-language local
variables. The name "explicit stack slot" makes it clear what this
construct is.
This is the floating point equivalent of trapif: Trap when a given
condition is in the floating-point flags.
Define Intel encodings comparable to the trapif encodings.
This instruction loads a stack limit from a global variable and compares
it to the stack pointer, trapping if the stack has grown beyond the
limit.
Also add a expand_flags transform group containing legalization patterns
for ISAs with CPU flags.
Fixes#234.
Changes:
* Adds a new generic instruction, SELECTIF, that does value selection (a la
conditional move) similarly to existing SELECT, except that it is
controlled by condition code input and flags-register inputs.
* Adds a new Intel x86_64 variant, 'baseline', that supports SSE2 and
nothing else.
* Adds new Intel x86_64 instructions BSR and BSF.
* Implements generic CLZ, CTZ and POPCOUNT on x86_64 'baseline' targets
using the new BSR, BSF and SELECTIF instructions.
* Implements SELECTIF on x86_64 targets using conditional-moves.
* new test filetests/isa/intel/baseline_clz_ctz_popcount.cton
(for legalization)
* new test filetests/isa/intel/baseline_clz_ctz_popcount_encoding.cton
(for encoding)
* Allow lib/cretonne/meta/gen_legalizer.py to generate non-snake-caseified
Rust without rustc complaining.
Fixes#238.
`stack_addr` and unrestricted loads and stores *can* be used with entirely
defined behavior. The sense in which they're not "safe" is only that it's
possible to misuse them. This subtlety wasn't captured in the definition
of "safe" here, so for now, just remove the definition so that it doesn't
cause confusion.
* Clarify undefined behavior and notrap.
Remove the "No undefined behavior" paragraph from the README. The other
paragraphs, specifically "Portable semantics" and
"Fast sandbox verification", describe Cretonne's goals in this area.
Define *addressable* and *accessible* memory, so that trapping remains a fully defined part of the semantics, and we have a clear boundary around undefined behavior, and use these terms to describe related constructs.
Add EBB parameter and EBB argument to the langref glossary to clarify
the distinction between formal EBB parameter values and arguments passed
to branches.
- Replace "ebb_arg" with "ebb_param" in function names that deal with
EBB parameters.
- Rename the ValueDef variants to Result and Param.
- A bunch of other small langref fixes.
No functional changes intended.
Add integer and floating comparison instructions that return CPU flags:
ifcmp, ifcmp_imm, and ffcmp.
Add conditional branch instructions that check CPU flags: brif, brff
Add instructions that check a condition in the CPU flags and return a
b1: trueif, trueff.
These are parallels to the existing regmove instruction, but the divert
the value to and from a stack slot.
Like regmove diversions, this is a temporary diversion that must be
local to the EBB.