* Implement interrupting wasm code, reimplement stack overflow
This commit is a relatively large change for wasmtime with two main
goals:
* Primarily this enables interrupting executing wasm code with a trap,
preventing infinite loops in wasm code. Note that resumption of the
wasm code is not a goal of this commit.
* Additionally this commit reimplements how we handle stack overflow to
ensure that host functions always have a reasonable amount of stack to
run on. This fixes an issue where we might longjmp out of a host
function, skipping destructors.
Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.
A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.
When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.
Some fallout included from this change is:
* Unix signal handlers are no longer registered with `SA_ONSTACK`.
Instead they run on the native stack the thread was already using.
This is possible since stack overflow isn't handled by hitting the
guard page, but rather it's explicitly checked for in wasm now. Native
stack overflow will continue to abort the process as usual.
* Unix sigaltstack management is now no longer necessary since we don't
use it any more.
* Windows no longer has any need to reset guard pages since we no longer
try to recover from faults on guard pages.
* On all targets probestack intrinsics are disabled since we use a
different mechanism for catching stack overflow.
* The C API has been updated with interrupts handles. An example has
also been added which shows off how to interrupt a module.
Closes#139Closes#860Closes#900
* Update comment about magical interrupt value
* Store stack limit as a global value, not a closure
* Run rustfmt
* Handle review comments
* Add a comment about SA_ONSTACK
* Use `usize` for type of `INTERRUPTED`
* Parse human-readable durations
* Bring back sigaltstack handling
Allows libstd to print out stack overflow on failure still.
* Add parsing and emission of stack limit-via-preamble
* Fix new example for new apis
* Fix host segfault test in release mode
* Fix new doc example
This commit optimizes the codegen of `Func::wrap` such that if you do
something like `Func::wrap(&store, || {})` then the shim generated
contains zero code (as expected). In general this means that the extra
tidbits generated by wasmtime are all eligible to be entirely optimized
away so long as you don't actually rely on something.
* Refactor wasmtime_runtime::Export
Instead of an enumeration with variants that have data fields have an
enumeration where each variant has a struct, and each struct has the
data fields. This allows us to store the structs in the `wasmtime` API
and avoid lots of `panic!` calls and various extraneous matches.
* Pre-generate trampoline functions
The `wasmtime` crate supports calling arbitrary function signatures in
wasm code, and to do this it generates "trampoline functions" which have
a known ABI that then internally convert to a particular signature's ABI
and call it. These trampoline functions are currently generated
on-the-fly and are cached in the global `Store` structure. This,
however, is suboptimal for a few reasons:
* Due to how code memory is managed each trampoline resides in its own
64kb allocation of memory. This means if you have N trampolines you're
using N * 64kb of memory, which is quite a lot of overhead!
* Trampolines are never free'd, even if the referencing module goes
away. This is similar to #925.
* Trampolines are a source of shared state which prevents `Store` from
being easily thread safe.
This commit refactors how trampolines are managed inside of the
`wasmtime` crate and jit/runtime internals. All trampolines are now
allocated in the same pass of `CodeMemory` that the main module is
allocated into. A trampoline is generated per-signature in a module as
well, instead of per-function. This cache of trampolines is stored
directly inside of an `Instance`. Trampolines are stored based on
`VMSharedSignatureIndex` so they can be looked up from the internals of
the `ExportFunction` value.
The `Func` API has been updated with various bits and pieces to ensure
the right trampolines are registered in the right places. Overall this
should ensure that all trampolines necessary are generated up-front
rather than lazily. This allows us to remove the trampoline cache from
the `Compiler` type, and move one step closer to making `Compiler`
threadsafe for usage across multiple threads.
Note that as one small caveat the `Func::wrap*` family of functions
don't need to generate a trampoline at runtime, they actually generate
the trampoline at compile time which gets passed in.
Also in addition to shuffling a lot of code around this fixes one minor
bug found in `code_memory.rs`, where `self.position` was loaded before
allocation, but the allocation may push a new chunk which would cause
`self.position` to be zero instead.
* Pass the `SignatureRegistry` as an argument to where it's needed.
This avoids the need for storing it in an `Arc`.
* Ignore tramoplines for functions with lots of arguments
Co-authored-by: Dan Gohman <sunfish@mozilla.com>
* Enable the already-passing `bulk-memoryoperations/imports.wast` test
* Implement support for the `memory.init` instruction and passive data
This adds support for passive data segments and the `memory.init` instruction
from the bulk memory operations proposal. Passive data segments are stored on
the Wasm module and then `memory.init` instructions copy their contents into
memory.
* Implement the `data.drop` instruction
This allows wasm modules to deallocate passive data segments that it doesn't
need anymore. We keep track of which segments have not been dropped on an
`Instance` and when dropping them, remove the entry from the instance's hash
map. The module always needs all of the segments for new instantiations.
* Enable final bulk memory operations spec test
This requires special casing an expected error message for an `assert_trap`,
since the expected error message contains the index of an uninitialized table
element, but our trap implementation doesn't save that diagnostic information
and shepherd it out.
This adds support for the `table.copy` instruction from the bulk memory
proposal. It also supports multiple tables, which were introduced by the
reference types proposal.
Part of #928
* Improve robustness of cache loading/storing
Today wasmtime incorrectly loads compiled compiled modules from the
global cache when toggling settings such as optimizations. For example
if you execute `wasmtime foo.wasm` that will cache globally an
unoptimized version of the wasm module. If you then execute `wasmtime -O
foo.wasm` it would then reload the unoptimized version from cache, not
realizing the compilation settings were different, and use that instead.
This can lead to very surprising behavior naturally!
This commit updates how the cache is managed in an attempt to make it
much more robust against these sorts of issues. This takes a leaf out of
rustc's playbook and models the cache with a function that looks like:
fn load<T: Hash>(
&self,
data: T,
compute: fn(T) -> CacheEntry,
) -> CacheEntry;
The goal here is that it guarantees that all the `data` necessary to
`compute` the result of the cache entry is hashable and stored into the
hash key entry. This was previously open-coded and manually managed
where items were hashed explicitly, but this construction guarantees
that everything reasonable `compute` could use to compile the module is
stored in `data`, which is itself hashable.
This refactoring then resulted in a few workarounds and a few fixes,
including the original issue:
* The `Module` type was split into `Module` and `ModuleLocal` where only
the latter is hashed. The previous hash function for a `Module` left
out items like the `start_func` and didn't hash items like the imports
of the module. Omitting the `start_func` was fine since compilation
didn't actually use it, but omitting imports seemed uncomfortable
because while compilation didn't use the import values it did use the
*number* of imports, which seems like it should then be put into the
cache key. The `ModuleLocal` type now derives `Hash` to guarantee that
all of its contents affect the hash key.
* The `ModuleTranslationState` from `cranelift-wasm` doesn't implement
`Hash` which means that we have a manual wrapper to work around that.
This will be fixed with an upstream implementation, since this state
affects the generated wasm code. Currently this is just a map of
signatures, which is present in `Module` anyway, so we should be good
for the time being.
* Hashing `dyn TargetIsa` was also added, where previously it was not
fully hashed. Previously only the target name was used as part of the
cache key, but crucially the flags of compilation were omitted (for
example the optimization flags). Unfortunately the trait object itself
is not hashable so we still have to manually write a wrapper to hash
it, but we likely want to add upstream some utilities to hash isa
objects into cranelift itself. For now though we can continue to add
hashed fields as necessary.
Overall the goal here was to use the compiler to expose what we're not
hashing, and then make sure we organize data and write the right code to
ensure everything is hashed, and nothing more.
* Update crates/environ/src/module.rs
Co-Authored-By: Peter Huene <peterhuene@protonmail.com>
* Fix lightbeam
* Fix compilation of tests
* Update the expected structure of the cache
* Revert "Update the expected structure of the cache"
This reverts commit 2b53fee426a4e411c313d8c1e424841ba304a9cd.
* Separate the cache dir a bit
* Add a test the cache is busted with opt levels
* rustfmt
Co-authored-by: Peter Huene <peterhuene@protonmail.com>
* Reel in unsafety around `InstanceHandle`
This commit is an attempt, or at least is targeted at being a start, at
reeling in the unsafety around the `InstanceHandle` type. Currently this
type represents a sort of moral `Rc<Instance>` but is a bit more
specialized since the underlying memory is allocated through mmap.
Additionally, though, `InstanceHandle` exposes a fundamental flaw in its
safety by safetly allowing mutable access so long as you have `&mut
InstanceHandle`. This type, however, is trivially created by simply
cloning a `InstanceHandle` to get an owned reference. This means that
`&mut InstanceHandle` does not actually provide any guarantees about
uniqueness, so there's no more safety than `&InstanceHandle` itself.
This commit removes all `&mut self` APIs from `InstanceHandle`,
additionally removing some where `&self` was `unsafe` and `&mut self`
was safe (since it was trivial to subvert this "safety"). In doing so
interior mutability patterns are now used much more extensively through
structures such as `Table` and `Memory`. Additionally a number of
methods were refactored to be a bit clearer and use helper functions
where possible.
This is a relatively large commit unfortunately, but it snowballed very
quickly into touching quite a few places. My hope though is that this
will prevent developers working on wasmtime internals as well as
developers still yet to migrate to the `wasmtime` crate from falling
into trivial unsafe traps by accidentally using `&mut` when they can't.
All existing users relying on `&mut` will need to migrate to some form
of interior mutability, such as using `RefCell` or `Cell`.
This commit also additionally marks `InstanceHandle::new` as an `unsafe`
function. The rationale for this is that the `&mut`-safety is only the
beginning for the safety of `InstanceHandle`. In general the wasmtime
internals are extremely unsafe and haven't been audited for appropriate
usage of `unsafe`. Until that's done it's hoped that we can warn users
with this `unsafe` constructor and otherwise push users to the
`wasmtime` crate which we know is safe.
* Fix windows build
* Wrap up mutable memory state in one structure
Rather than having separate fields
* Use `Cell::set`, not `Cell::replace`, where possible
* Add a helper function for offsets from VMContext
* Fix a typo from merging
* rustfmt
* Use try_from, not as
* Tweak style of some setters
* Replace the global-exports mechanism with a caller-vmctx mechanism.
This eliminates the global exports mechanism, and instead adds a
caller-vmctx argument to wasm functions so that WASI can obtain the
memory and other things from the caller rather than looking them up in a
global registry.
This replaces #390.
* Fixup some merge conflicts
* Rustfmt
* Ensure VMContext is aligned to 16 bytes
With the removal of `global_exports` it "just so happens" that this
isn't happening naturally any more.
* Fixup some bugs with double vmctx in wasmtime crate
* Trampoline stub needed adjusting
* Use pointer type instead of always using I64 for caller vmctx
* Don't store `ir::Signature` in `Func` since we don't know the pointer
size at creation time.
* Skip the first 2 arguments in IR signatures since that's the two vmctx
parameters.
* Update cranelift to 0.56.0
* Handle more merge conflicts
* Rustfmt
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
* Migrate back to `std::` stylistically
This commit moves away from idioms such as `alloc::` and `core::` as
imports of standard data structures and types. Instead it migrates all
crates to uniformly use `std::` for importing standard data structures
and types. This also removes the `std` and `core` features from all
crates to and removes any conditional checking for `feature = "std"`
All of this support was previously added in #407 in an effort to make
wasmtime/cranelift "`no_std` compatible". Unfortunately though this
change comes at a cost:
* The usage of `alloc` and `core` isn't idiomatic. Especially trying to
dual between types like `HashMap` from `std` as well as from
`hashbrown` causes imports to be surprising in some cases.
* Unfortunately there was no CI check that crates were `no_std`, so none
of them actually were. Many crates still imported from `std` or
depended on crates that used `std`.
It's important to note, however, that **this does not mean that wasmtime
will not run in embedded environments**. The style of the code today and
idioms aren't ready in Rust to support this degree of multiplexing and
makes it somewhat difficult to keep up with the style of `wasmtime`.
Instead it's intended that embedded runtime support will be added as
necessary. Currently only `std` is necessary to build `wasmtime`, and
platforms that natively need to execute `wasmtime` will need to use a
Rust target that supports `std`. Note though that not all of `std` needs
to be supported, but instead much of it could be configured off to
return errors, and `wasmtime` would be configured to gracefully handle
errors.
The goal of this PR is to move `wasmtime` back to idiomatic usage of
features/`std`/imports/etc and help development in the short-term.
Long-term when platform concerns arise (if any) they can be addressed by
moving back to `no_std` crates (but fixing the issues mentioned above)
or ensuring that the target in Rust has `std` available.
* Start filling out platform support doc