* Change wasm-to-host trampolines to take the values_vec size
This commit changes the ABI of wasm-to-host trampolines, which are
only used right now for functions created with `Func::new`, to pass
along the size of the `values_vec` argument. Previously the trampoline
simply received `*mut ValRaw` and assumed that it was the appropriate
size. By receiving a size as well we can thread through `&mut [ValRaw]`
internally instead of `*mut ValRaw`.
The original motivation for this is that I'm planning to leverage these
trampolines for the component model for host-defined functions. Out of
an abundance of caution of making sure that everything lines up I wanted
to be able to write down asserts about the size received at runtime
compared to the size expected. This overall led me to the desire to
thread this size parameter through on the assumption that it would not
impact performance all that much.
I ran two benchmarks locally from the `call.rs` benchmark and got:
* `sync/no-hook/wasm-to-host - nop - unchecked` - no change
* `sync/no-hook/wasm-to-host - nop-params-and-results - unchecked` - 5%
slower
This is what I roughly expected in that if nothing actually reads the
new parameter (e.g. no arguments) then threading through the parameter
is effectively otherwise free. Otherwise though accesses to the `ValRaw`
storage is now bounds-checked internally in Wasmtime instead of assuming
it's valid, leading to the 5% slowdown (~9.6ns to ~10.3ns). If this
becomes a peformance bottleneck for a particular use case then we should
be fine to remove the bounds checking here or otherwise only bounds
check in debug mode, otherwise I plan on leaving this as-is.
Of particular note this also changes the C API for `*_unchecked`
functions where the C callback now receives the size of the array as
well.
* Add docs
The `wasmtime-cpp` test suite uncovered an issue where asking for the
frames of a trap would fail immediately after the trap was created. In
addition to fixing this issue I've also updated the documentation of
`Trap::frames` to indicate when it returns `None`.
* sorta working in runtime
* wasmtime-runtime: get rid of wasm-backtrace feature
* wasmtime: factor to make backtraces recording optional. not configurable yet
* get rid of wasm-backtrace features
* trap tests: now a Trap optionally contains backtrace
* eliminate wasm-backtrace feature
* code review fixes
* ci: no more wasm-backtrace feature
* c_api: backtraces always enabled
* config: unwind required by backtraces and ref types
* plumbed
* test that disabling backtraces works
* code review comments
* fuzzing generator: wasm_backtrace is a runtime config now
* doc fix
A new version of rustc was released this morning and we have a few small
breakages on our CI which need fixing:
* A new warning was coming out of the c-api crate about an unneeded
`unsafe` block.
* The panic message of a task in `cranelift-object` needed updating
since the standard library changed how it formats strings with the nul
byte.
* Upgrade all crates to the Rust 2021 edition
I've personally started using the new format strings for things like
`panic!("some message {foo}")` or similar and have been upgrading crates
on a case-by-case basis, but I think it probably makes more sense to go
ahead and blanket upgrade everything so 2021 features are always
available.
* Fix compile of the C API
* Fix a warning
* Fix another warning
My previous PR at #3958 accidentally removed the only way to get type
information from a `wasmtime_module_t`, so this commit re-adds methods
back in to continue to be able to get import/export information from a
compiled module.
* Remove the module linking implementation in Wasmtime
This commit removes the experimental implementation of the module
linking WebAssembly proposal from Wasmtime. The module linking is no
longer intended for core WebAssembly but is instead incorporated into
the component model now at this point. This means that very large parts
of Wasmtime's implementation of module linking are no longer applicable
and would change greatly with an implementation of the component model.
The main purpose of this is to remove Wasmtime's reliance on the support
for module-linking in `wasmparser` and tooling crates. With this
reliance removed we can move over to the `component-model` branch of
`wasmparser` and use the updated support for the component model.
Additionally given the trajectory of the component model proposal the
embedding API of Wasmtime will not look like what it looks like today
for WebAssembly. For example the core wasm `Instance` will not change
and instead a `Component` is likely to be added instead.
Some more rationale for this is in #3941, but the basic idea is that I
feel that it's not going to be viable to develop support for the
component model on a non-`main` branch of Wasmtime. Additionaly I don't
think it's viable, for the same reasons as `wasm-tools`, to support the
old module linking proposal and the new component model at the same
time.
This commit takes a moment to not only delete the existing module
linking implementation but some abstractions are also simplified. For
example module serialization is a bit simpler that there's only one
module. Additionally instantiation is much simpler since the only
initializer we have to deal with are imports and nothing else.
Closes#3941
* Fix doc link
* Update comments
* Delete historical interruptable support in Wasmtime
This commit removes the `Config::interruptable` configuration along with
the `InterruptHandle` type from the `wasmtime` crate. The original
support for adding interruption to WebAssembly was added pretty early on
in the history of Wasmtime when there was no other method to prevent an
infinite loop from the host. Nowadays, however, there are alternative
methods for interruption such as fuel or epoch-based interruption.
One of the major downsides of `Config::interruptable` is that even when
it's not enabled it forces an atomic swap to happen when entering
WebAssembly code. This technically could be a non-atomic swap if the
configuration option isn't enabled but that produces even more branch-y
code on entry into WebAssembly which is already something we try to
optimize. Calling into WebAssembly is on the order of a dozens of
nanoseconds at this time and an atomic swap, even uncontended, can add
up to 5ns on some platforms.
The main goal of this PR is to remove this atomic swap on entry into
WebAssembly. This is done by removing the `Config::interruptable` field
entirely, moving all existing consumers to epochs instead which are
suitable for the same purposes. This means that the stack overflow check
is no longer entangled with the interruption check and perhaps one day
we could continue to optimize that further as well.
Some consequences of this change are:
* Epochs are now the only method of remote-thread interruption.
* There are no more Wasmtime traps that produces the `Interrupted` trap
code, although we may wish to move future traps to this so I left it
in place.
* The C API support for interrupt handles was also removed and bindings
for epoch methods were added.
* Function-entry checks for interruption are a tiny bit less efficient
since one check is performed for the stack limit and a second is
performed for the epoch as opposed to the `Config::interruptable`
style of bundling the stack limit and the interrupt check in one. It's
expected though that this is likely to not really be measurable.
* The old `VMInterrupts` structure is renamed to `VMRuntimeLimits`.
* Update to cap-std 0.22.0.
The main change relevant to Wasmtime here is that this includes the
rustix fix for compilation errors on Rust nightly with the `asm!` macro.
* Add itoa to deny.toml.
* Update the doc and fuzz builds to the latest Rust nightly.
* Update to libc 0.2.112 to pick up the `POLLRDHUP` fix.
* Update to cargo-fuzz 0.11, for compatibility with Rust nightly.
This appears to be the fix for rust-fuzz/cargo-fuzz#277.
* Add a compilation section to disable address maps
This commit adds a new `Config::generate_address_map` compilation
setting which is used to disable emission of the `.wasmtime.addrmap`
section of compiled artifacts. This section is currently around the size
of the entire `.text` section itself unfortunately and for size reasons
may wish to be omitted. Functionality-wise all that is lost is knowing
the precise wasm module offset address of a faulting instruction or in a
backtrace of instructions. This also means that if the module has DWARF
debugging information available with it Wasmtime isn't able to produce a
filename and line number in the backtrace.
This option remains enabled by default. This option may not be needed in
the future with #3547 perhaps, but in the meantime it seems reasonable
enough to support a configuration mode where the section is entirely
omitted if the smallest module possible is desired.
* Fix some CI issues
* Update tests/all/traps.rs
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* Do less work in compilation for address maps
But only when disabled
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
This commit removes the Lightbeam backend from Wasmtime as per [RFC 14].
This backend hasn't received maintenance in quite some time, and as [RFC
14] indicates this doesn't meet the threshold for keeping the code
in-tree, so this commit removes it.
A fast "baseline" compiler may still be added in the future. The
addition of such a backend should be in line with [RFC 14], though, with
the principles we now have for stable releases of Wasmtime. I'll close
out Lightbeam-related issues once this is merged.
[RFC 14]: https://github.com/bytecodealliance/rfcs/pull/14
* Add `*_unchecked` variants of `Func` APIs for the C API
This commit is what is hopefully going to be my last installment within
the saga of optimizing function calls in/out of WebAssembly modules in
the C API. This is yet another alternative approach to #3345 (sorry) but
also contains everything necessary to make the C API fast. As in #3345
the general idea is just moving checks out of the call path in the same
style of `TypedFunc`.
This new strategy takes inspiration from previously learned attempts
effectively "just" exposes how we previously passed `*mut u128` through
trampolines for arguments/results. This storage format is formalized
through a new `ValRaw` union that is exposed from the `wasmtime` crate.
By doing this it made it relatively easy to expose two new APIs:
* `Func::new_unchecked`
* `Func::call_unchecked`
These are the same as their checked equivalents except that they're
`unsafe` and they work with `*mut ValRaw` rather than safe slices of
`Val`. Working with these eschews type checks and such and requires
callers/embedders to do the right thing.
These two new functions are then exposed via the C API with new
functions, enabling C to have a fast-path of calling/defining functions.
This fast path is akin to `Func::wrap` in Rust, although that API can't
be built in C due to C not having generics in the same way that Rust
has.
For some benchmarks, the benchmarks here are:
* `nop` - Call a wasm function from the host that does nothing and
returns nothing.
* `i64` - Call a wasm function from the host, the wasm function calls a
host function, and the host function returns an `i64` all the way out to
the original caller.
* `many` - Call a wasm function from the host, the wasm calls
host function with 5 `i32` parameters, and then an `i64` result is
returned back to the original host
* `i64` host - just the overhead of the wasm calling the host, so the
wasm calls the host function in a loop.
* `many` host - same as `i64` host, but calling the `many` host function.
All numbers in this table are in nanoseconds, and this is just one
measurement as well so there's bound to be some variation in the precise
numbers here.
| Name | Rust | C (before) | C (after) |
|-----------|------|------------|-----------|
| nop | 19 | 112 | 25 |
| i64 | 22 | 207 | 32 |
| many | 27 | 189 | 34 |
| i64 host | 2 | 38 | 5 |
| many host | 7 | 75 | 8 |
The main conclusion here is that the C API is significantly faster than
before when using the `*_unchecked` variants of APIs. The Rust
implementation is still the ceiling (or floor I guess?) for performance
The main reason that C is slower than Rust is that a little bit more has
to travel through memory where on the Rust side of things we can
monomorphize and inline a bit more to get rid of that. Overall though
the costs are way way down from where they were originally and I don't
plan on doing a whole lot more myself at this time. There's various
things we theoretically could do I've considered but implementation-wise
I think they'll be much more weighty.
* Tweak `wasmtime_externref_t` API comments
* Optimize `Func::call` and its C API
This commit is an alternative to #3298 which achieves effectively the
same goal of optimizing the `Func::call` API as well as its C API
sibling of `wasmtime_func_call`. The strategy taken here is different
than #3298 though where a new API isn't created, rather a small tweak to
an existing API is done. Specifically this commit handles the major
sources of slowness with `Func::call` with:
* Looking up the type of a function, to typecheck the arguments with and
use to guide how the results should be loaded, no longer hits the
rwlock in the `Engine` but instead each `Func` contains its own
`FuncType`. This can be an unnecessary allocation for funcs not used
with `Func::call`, so this is a downside of this implementation
relative to #3298. A mitigating factor, though, is that instance
exports are loaded lazily into the `Store` and in theory not too many
funcs are active in the store as `Func` objects.
* Temporary storage is amortized with a long-lived `Vec` in the `Store`
rather than allocating a new vector on each call. This is basically
the same strategy as #3294 only applied to different types in
different places. Specifically `wasmtime::Store` now retains a
`Vec<u128>` for `Func::call`, and the C API retains a `Vec<Val>` for
calling `Func::call`.
* Finally, an API breaking change is made to `Func::call` and its type
signature (as well as `Func::call_async`). Instead of returning
`Box<[Val]>` as it did before this function now takes a
`results: &mut [Val]` parameter. This allows the caller to manage the
allocation and we can amortize-remove it in `wasmtime_func_call` by
using space after the parameters in the `Vec<Val>` we're passing in.
This change is naturally a breaking change and we'll want to consider
it carefully, but mitigating factors are that most embeddings are
likely using `TypedFunc::call` instead and this signature taking a
mutable slice better aligns with `Func::new` which receives a mutable
slice for the results.
Overall this change, in the benchmark of "call a nop function from the C
API" is not quite as good as #3298. It's still a bit slower, on the
order of 15ns, because there's lots of capacity checks around vectors
and the type checks are slightly less optimized than before. Overall
though this is still significantly better than today because allocations
and the rwlock to acquire the type information are both avoided. I
personally feel that this change is the best to do because it has less
of an API impact than #3298.
* Rebase issues
This can be useful for host functions that want to consume fuel to
reflect their relative cost. Additionally it's a relatively easy
addition to have and someone's asking for it!
Closes#3315
This commit improves the runtime support for wasm-to-host invocations
for functions created with `Func::new` or `wasmtime_func_new` in the C
API. Previously a `Vec` (sometimes a `SmallVec`) would be dynamically
allocated on each host call to store the arguments that are coming from
wasm and going to the host. In the case of the `wasmtime` crate we need
to decode the `u128`-stored values, and in the case of the C API we need
to decode the `Val` into the C API's `wasmtime_val_t`.
The technique used in this commit is to store a singular `Vec<T>` inside
the "store", be it the literal `Store<T>` or within the `T` in the case
of the C API, which can be reused across wasm->host calls. This means
that we're unlikely to actually perform dynamic memory allocation and
instead we should hit a faster path where the `Vec` always has enough
capacity.
Note that this is just a mild improvement for `Func::new`-based
functions. It's still the case that `Func::wrap` is much faster, but
unfortunately the C API doesn't have access to `Func::wrap`, so the main
motivation here is accelerating the C API.
* Add a `Module::deserialize_file` method
This commit adds a new method to the `wasmtime::Module` type,
`deserialize_file`. This is intended to be the same as the `deserialize`
method except for the serialized module is present as an on-disk file.
This enables Wasmtime to internally use `mmap` to avoid copying bytes
around and generally makes loading a module much faster.
A C API is added in this commit as well for various bindings to use this
accelerated path now as well. Another option perhaps for a Rust-based
API is to have an API taking a `File` itself to allow for a custom file
descriptor in one way or another, but for now that's left for a possible
future refactoring if we find a use case.
* Fix compat with main - handle readdonly mmap
* wip
* Try to fix Windows support
* Implement the memory64 proposal in Wasmtime
This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.
A number of internal and public interfaces are changing as a result of
this commit, for example:
* Acessors on `wasmtime::Memory` that work with pages now all return
`u64` unconditionally rather than `u32`. This makes it possible to
accommodate 64-bit memories with this API, but we may also want to
consider `usize` here at some point since the host can't grow past
`usize`-limited pages anyway.
* The `wasmtime::Limits` structure is removed in favor of
minimum/maximum methods on table/memory types.
* Many libcall intrinsics called by jit code now unconditionally take
`u64` arguments instead of `u32`. Return values are `usize`, however,
since the return value, if successful, is always bounded by host
memory while arguments can come from any guest.
* The `heap_addr` clif instruction now takes a 64-bit offset argument
instead of a 32-bit one. It turns out that the legalization of
`heap_addr` already worked with 64-bit offsets, so this change was
fairly trivial to make.
* The runtime implementation of mmap-based linear memories has changed
to largely work in `usize` quantities in its API and in bytes instead
of pages. This simplifies various aspects and reflects that
mmap-memories are always bound by `usize` since that's what the host
is using to address things, and additionally most calculations care
about bytes rather than pages except for the very edge where we're
going to/from wasm.
Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.
In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:
* All memory accesses are bounds-checked. I'm not sure how aggressively
Cranelift tries to optimize out bounds checks, but I suspect not a ton
since we haven't stressed this much historically.
* Heaps are always precisely sized. This means that every call to
`memory.grow` will incur a `memcpy` of memory from the old heap to the
new. We probably want to at least look into `mremap` on Linux and
otherwise try to implement schemes where dynamic heaps have some
reserved pages to grow into to help amortize the cost of
`memory.grow`.
The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.
[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
* Fix some tests
* More test fixes
* Fix wasmtime tests
* Fix doctests
* Revert to 32-bit immediate offsets in `heap_addr`
This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.
* Disable memory64 for spectest fuzzing
* Fix wrong offset being added to heap addr
* More comments!
* Clarify bytes/pages
This exposes the functionality of the `Linker` type where a
store-independent function can be created and inserted, allowing a
linker's functions to be used across many stores (instead of requiring
one linker-per-store).
Closes#3110
* Port wasi-common to io-lifetimes.
This ports wasi-common from unsafe-io to io-lifetimes.
Ambient authority is now indicated via calls to `ambient_authority()`
from the ambient-authority crate, rather than using `unsafe` blocks.
The `GetSetFdFlags::set_fd_flags` function is now split into two phases,
to simplify lifetimes in implementations which need to close and re-open
the underlying file.
* Use posish for errno values instead of libc.
This eliminates one of the few remaining direct libc dependencies.
* Port to posish::io::poll.
Use posish::io::poll instead of calling libc directly. This factors out
more code from Wasmtime, and eliminates the need to manipulate raw file
descriptors directly.
And, this eliminates the last remaining direct dependency on libc in
wasi-common.
* Port wasi-c-api to io-lifetimes.
* Update to posish 0.16.0.
* Embeded NULs in filenames now get `EINVAL` instead of `EILSEQ`.
* Accept either `EILSEQ` or `EINVAL` for embedded NULs.
* Bump the nightly toolchain to 2021-07-12.
This fixes build errors on the semver crate, which as of this writing
builds with latest nightly and stable but not 2021-04-11, the old pinned
version.
* Have cap-std-sync re-export ambient_authority so that users get the same version.
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
* wasmtime-wasi: re-exporting this WasiCtxBuilder was shadowing the right one
wasi-common's WasiCtxBuilder is really only useful wasi_cap_std_sync and
wasi_tokio to implement their own Builder on top of.
This re-export of wasi-common's is 1. not useful and 2. shadow's the
re-export of the right one in sync::*.
* wasi-common: eliminate WasiCtxBuilder, make the builder methods on WasiCtx instead
* delete wasi-common::WasiCtxBuilder altogether
just put those methods directly on &mut WasiCtx.
As a bonus, the sync and tokio WasiCtxBuilder::build functions
are no longer fallible!
* bench fixes
* more test fixes
* Bring back `Module::deserialize`
I thought I was being clever suggesting that `Module::deserialize` was
removed from #2791 by funneling all module constructors into
`Module::new`. As our studious fuzzers have found, though, this means
that `Module::new` is not safe currently to pass arbitrary user-defined
input into. Now one might pretty reasonable expect to be able to do
that, however, being a WebAssembly engine and all. This PR as a result
separates the `deserialize` part of `Module::new` back into
`Module::deserialize`.
This means that binary blobs created with `Module::serialize` and
`Engine::precompile_module` will need to be passed to
`Module::deserialize` to "rehydrate" them back into a `Module`. This
restores the property that it should be safe to pass arbitrary input to
`Module::new` since it's always expected to be a wasm module. This also
means that fuzzing will no longer attempt to fuzz `Module::deserialize`
which isn't something we want to do anyway.
* Fix an example
* Mark `Module::deserialize` as `unsafe`
* Add resource limiting to the Wasmtime API.
This commit adds a `ResourceLimiter` trait to the Wasmtime API.
When used in conjunction with `Store::new_with_limiter`, this can be used to
monitor and prevent WebAssembly code from growing linear memories and tables.
This is particularly useful when hosts need to take into account host resource
usage to determine if WebAssembly code can consume more resources.
A simple `StaticResourceLimiter` is also included with these changes that will
simply limit the size of linear memories or tables for all instances created in
the store based on static values.
* Code review feedback.
* Implemented `StoreLimits` and `StoreLimitsBuilder`.
* Moved `max_instances`, `max_memories`, `max_tables` out of `Config` and into
`StoreLimits`.
* Moved storage of the limiter in the runtime into `Memory` and `Table`.
* Made `InstanceAllocationRequest` use a reference to the limiter.
* Updated docs.
* Made `ResourceLimiterProxy` generic to remove a level of indirection.
* Fixed the limiter not being used for `wasmtime::Memory` and
`wasmtime::Table`.
* Code review feedback and bug fix.
* `Memory::new` now returns `Result<Self>` so that an error can be returned if
the initial requested memory exceeds any limits placed on the store.
* Changed an `Arc` to `Rc` as the `Arc` wasn't necessary.
* Removed `Store` from the `ResourceLimiter` callbacks. Custom resource limiter
implementations are free to capture any context they want, so no need to
unnecessarily store a weak reference to `Store` from the proxy type.
* Fixed a bug in the pooling instance allocator where an instance would be
leaked from the pool. Previously, this would only have happened if the OS was
unable to make the necessary linear memory available for the instance. With
these changes, however, the instance might not be created due to limits
placed on the store. We now properly deallocate the instance on error.
* Added more tests, including one that covers the fix mentioned above.
* Code review feedback.
* Add another memory to `test_pooling_allocator_initial_limits_exceeded` to
ensure a partially created instance is successfully deallocated.
* Update some doc comments for better documentation of `Store` and
`ResourceLimiter`.
* Move `Module::compile` to `Engine::precompile_module`.
* Remove `Module::deserialize` method.
* Make `Module::serialize` the same format as `Engine::precompile_module`.
* Make `Engine::precompile_module` return a `Vec<u8>`.
* Move the remaining serialization-related code to `serialization.rs`.
* Implement defining host functions at the Config level.
This commit introduces defining host functions at the `Config` rather than with
`Func` tied to a `Store`.
The intention here is to enable a host to define all of the functions once
with a `Config` and then use a `Linker` (or directly with
`Store::get_host_func`) to use the functions when instantiating a module.
This should help improve the performance of use cases where a `Store` is
short-lived and redefining the functions at every module instantiation is a
noticeable performance hit.
This commit adds `add_to_config` to the code generation for Wasmtime's `Wasi`
type.
The new method adds the WASI functions to the given config as host functions.
This commit adds context functions to `Store`: `get` to get a context of a
particular type and `set` to set the context on the store.
For safety, `set` cannot replace an existing context value of the same type.
`Wasi::set_context` was added to set the WASI context for a `Store` when using
`Wasi::add_to_config`.
* Add `Config::define_host_func_async`.
* Make config "async" rather than store.
This commit moves the concept of "async-ness" to `Config` rather than `Store`.
Note: this is a breaking API change for anyone that's already adopted the new
async support in Wasmtime.
Now `Config::new_async` is used to create an "async" config and any `Store`
associated with that config is inherently "async".
This is needed for async shared host functions to have some sanity check during their
execution (async host functions, like "async" `Func`, need to be called with
the "async" variants).
* Update async function tests to smoke async shared host functions.
This commit updates the async function tests to also smoke the shared host
functions, plus `Func::wrap0_async`.
This also changes the "wrap async" method names on `Config` to
`wrap$N_host_func_async` to slightly better match what is on `Func`.
* Move the instance allocator into `Engine`.
This commit moves the instantiated instance allocator from `Config` into
`Engine`.
This makes certain settings in `Config` no longer order-dependent, which is how
`Config` should ideally be.
This also removes the confusing concept of the "default" instance allocator,
instead opting to construct the on-demand instance allocator when needed.
This does alter the semantics of the instance allocator as now each `Engine`
gets its own instance allocator rather than sharing a single one between all
engines created from a configuration.
* Make `Engine::new` return `Result`.
This is a breaking API change for anyone using `Engine::new`.
As creating the pooling instance allocator may fail (likely cause is not enough
memory for the provided limits), instead of panicking when creating an
`Engine`, `Engine::new` now returns a `Result`.
* Remove `Config::new_async`.
This commit removes `Config::new_async` in favor of treating "async support" as
any other setting on `Config`.
The setting is `Config::async_support`.
* Remove order dependency when defining async host functions in `Config`.
This commit removes the order dependency where async support must be enabled on
the `Config` prior to defining async host functions.
The check is now delayed to when an `Engine` is created from the config.
* Update WASI example to use shared `Wasi::add_to_config`.
This commit updates the WASI example to use `Wasi::add_to_config`.
As only a single store and instance are used in the example, it has no semantic
difference from the previous example, but the intention is to steer users
towards defining WASI on the config and only using `Wasi::add_to_linker` when
more explicit scoping of the WASI context is required.
This commit implements allocating fiber stacks in an instance allocator.
The on-demand instance allocator doesn't support custom stacks, so the
implementation will use the allocation from `wasmtime-fiber` for the fiber
stacks.
In the future, the pooling instance allocator will return custom stacks to use
on Linux and macOS.
On Windows, the native fiber implementation will always be used.
* Ensure `store` is in the function names
* Don't abort the process on `add_fuel` when fuel isn't configured
* Allow learning about failure in both `add_fuel` and `fuel_consumed`
* Add an instance limit to `Config`
This commit adds a new parameter to `Config` which limits the number of
instances that can be created within a store connected to that `Config`.
The intention here is to provide a default safeguard against
module-linking modules that recursively create too many instances.
* Update crates/c-api/include/wasmtime.h
Co-authored-by: Peter Huene <peter@huene.dev>
Co-authored-by: Peter Huene <peter@huene.dev>
* Update WebAssembly C API submodule to latest commit.
This commit updates the WebAssembly C API submodule (for `wasm.h`) to the
latest commit out of master.
This fixes the behavior of `wasm_name_new_from_string` such that it no longer
copies the null character into the name, which caused unexpected failures when
using the Wasmtime linker as imports wouldn't resolve when the null was
present.
Along with this change were breaking changes to `wasm_func_call`, the host
callback signatures, and `wasm_instance_new` to take a vector type instead of a
pointer to an unsized array.
As a result, Wasmtime language bindings based on the C API will need to be
updated once this change is pulled in.
Fixes#2211.
Fixes#2131.
* Update Doxygen comments for wasm.h changes.
* Update the C API with module linking support
This commit does everything necessary (ideally) to support the module
linking proposal in the C API. The changes here are:
* New `wasm_{module,instance}type_t` types and accessors
* New `wasm_{module,instance}_type` functions
* Conversions between `wasm_extern_t` and `wasm_{instance,module}_t`, as
well as `wasm_externtype_t` and the new types.
* Addition of `WASM_EXTERN_{MODULE,INSTANCE}` constants
* New `wasm_config_t` modifier to enable/disable module linking
With these functions it should be possible to pass instances/modules to
instances and also acquire them from exports. Altogether this should
enable everything for module linking.
An important point for this is that I've opted to add all these items
under the `wasm_*` name prefix instead of `wasmtime_*`. I've done this
since they're all following the idioms of existing APIs and while not
standard the intention would be to standardize them (unlike many other
Wasmtime-specific APIs).
cc #2094
* Appease doxygen
* Implement imported/exported modules/instances
This commit implements the final piece of the module linking proposal
which is to flesh out the support for importing/exporting instances and
modules. This ended up having a few changes:
* Two more `PrimaryMap` instances are now stored in an `Instance`. The value
for instances is `InstanceHandle` (pretty easy) and for modules it's
`Box<dyn Any>` (less easy).
* The custom host state for `InstanceHandle` for `wasmtime` is now
`Arc<TypeTables` to be able to fully reconstruct an instance's types
just from its instance.
* Type matching for imports now has been updated to take
instances/modules into account.
One of the main downsides of this implementation is that type matching
of imports is duplicated between wasmparser and wasmtime, leading to
posssible bugs especially in the subtelties of module linking. I'm not
sure how best to unify these two pieces of validation, however, and it
may be more trouble than it's worth.
cc #2094
* Update wat/wast/wasmparser
* Review comments
* Fix a bug in publish script to vendor the right witx
Currently there's two witx binaries in our repository given the two wasi
spec submodules, so this updates the publication script to vendor the
right one.
This commit deletes the old `snapshot_0` implementation of wasi-common,
along with the `wig` crate that was used to generate bindings for it.
This then reimplements `snapshot_0` in terms of
`wasi_snapshot_preview1`. There were very few changes between the two
snapshots:
* The `nlink` field of `FileStat` was increased from 32 to 64 bits.
* The `set` field of `whence` was reordered.
* Clock subscriptions in polling dropped their redundant userdata field.
This makes all of the syscalls relatively straightforward to simply
delegate to the next snapshot's implementation. Some trickery happens to
avoid extra cost when dealing with iovecs, but since the memory layout
of iovecs remained the same this should still work.
Now that `snapshot_0` is using wiggle we simply have a trait to
implement, and that's implemented for the same `WasiCtx` that has the
`wasi_snapshot_preview1` trait implemented for it as well. While this
theoretically means that you could share the file descriptor table
between the two snapshots that's not supported in the generated bindings
just yet. A separate `WasiCtx` will be created for each WASI module.
With the module linking proposal the field name on imports is now
optional, and only the module is required to be specified. This commit
propagates this API change to the boundary of wasmtime's API, ensuring
consumers are aware of what's optional with module linking and what
isn't. Note that it's expected that all existing users will either
update accordingly or unwrap the result since module linking is
presumably disabled.
This commit adds lots of plumbing to get the type section from the
module linking proposal plumbed all the way through to the `wasmtime`
crate and the `wasmtime-c-api` crate. This isn't all that useful right
now because Wasmtime doesn't support imported/exported
modules/instances, but this is all necessary groundwork to getting that
exported at some point. I've added some light tests but I suspect the
bulk of the testing will come in a future commit.
One major change in this commit is that `SignatureIndex` no longer
follows type type index space in a wasm module. Instead a new
`TypeIndex` type is used to track that. Function signatures, still
indexed by `SignatureIndex`, are then packed together tightly.
This commit updates `wasmtime::FuncType` to exactly store an internal
`WasmFuncType` from the cranelift crates. This allows us to remove a
translation layer when we are given a `FuncType` and want to get an
internal cranelift type out as a result.
The other major change from this commit was changing the constructor and
accessors of `FuncType` to be iterator-based instead of exposing
implementation details.
This commit moves all of the caching support that currently lives in
`wasmtime-environ` into a `wasmtime-cache` crate and makes it optional. The
goal here is to slim down the `wasmtime-environ` crate and clearly separate
boundaries where caching is a standalone and optional feature, not intertwined
with other crates.