Any *.cton files in the docs directory are now included when running the
test-all.sh script. This is to ensure that the examples are in fact
correct IL.
Always print NaN and Inf floats with a sign. Print the positive ones as
+NaN and +Inf to make them easier to parse.
Compute exact EBB header offsets and check that branches are in range.
Not implemented yet: Relax branches that are not in range.
Invoke the relax_branches() pass from the 'test binemit' file tests so
they can verify the proper encoding of branch instructions too.
This instruction behaves like icmp fused with brnz, and it can be used
to represent fused compare+branch instruction on Intel when optimizing
for macro-op fusion.
RISC-V provides compare-and-branch instructions directly, and it is
needed there too.
Compare a scalar integer to an immediate constant. Both Intel and RISC-V
ISAs have this operation.
This requires the addition of a new IntCompareImm instruction format.
* Verify that a recomputed dominator tree is identical to the existing one.
* The verifier now typechecks instruction results and arguments.
* The verifier now typechecks instruction results and arguments.
* The verifier now typechecks instruction results and arguments.
* Added `inst_{fixed,variable}_args` accessor functions.
* Improved error messages in verifier.
* Type check return statements against the function signature.
Use the meta language encoding recipes to generate an emit_inst()
function for each ISA. The generated calls into recipe_*() functions
that must be implemented by hand.
Implement recipe_*() functions for the RISC-V recipes.
Add the TargetIsa::emit_inst() entry point which emits an instruction to
a CodeSink trait object.
When the legalizer splits a value into halves, it would previously stop
if the value was an EBB argument. With this change, we also split EBB
arguments and iteratively split arguments on branches to the EBB.
The iterative splitting stops when we hit the entry block arguments or
an instruction that isn't one of the concatenation instructions.
As discussed in #3.
Once we know the controlling type variable of a polymorphic instruction,
the types of input operands are either bound to known types, or they can
vary freely.
The call arguments on call_indirect should not include the fixed callee
argument.
Add legalizer assertions to verify that signatures are actually valid
after legalization. If not, we would get infinite legalizer loops.
These low-level functions allow us to build up a list of instruction
results incrementally. They are equivalent to the existing
attach_ebb_arg and append_ebb_arg.
Instead, just return the first of the detached values, and provide a
next_secondary_result() method for traversing the list.
This is equivalent to how detach_ebb_args() works, and it allows the
data flow graph to be modified while traversing the list of results.
Now that some instruction formats put all of their value arguments in a
value list, we need to know how many value are fixed and how many are
variable_args.
CC @angusholder who may need this information in the verifier.
Allow some flexibility in the signature matching for instruction
formats. In particular, look for a value list format as a second chance
option.
The Return, ReturnReg, and TernaryOverflow formats all fit the single
MultiAry catch-all format for instructions without immediate operands.
No instruction sets actually have single instructions for materializing
vector constants. You always need to use a constant pool.
Cretonne doesn't have constant pools yet, but it will in the future, and
that is how vector constants should be represented.
Instruction formats are now identified by a signature that doesn't
include the ordering of value operands relative to immediate operands.
This means that the BinaryRev instruction format becomes redundant, so
delete it. The isub_imm instruction was the only one using that format.
Rename it to irsub_imm to make it clear what it does now that it is
printed as 'irsub_imm v2, 45'.
Now that variable arguments are always stored in a value list with the
fixed arguments, we no longer need the arcane [&[Value]; 2] return type.
Arguments are always stored contiguously, so just return a &[Value]
slice.
Also remove the each_arg() methods which were just trying to make it
easier to work with the old slice pair.
With the Return and ReturnReg formats converted to using value lists for
storing their arguments, thee are no remaining instruction formats with
variable argument lists in boxed storage.
The Return and ReturnReg formats are also going to be merged since
they are identical now.
The Branch format also stores its fixed argument in the value list. This
requires the value pool to be passed to a few more functions.
Note that this actually makes the Branch and Jump variants of
InstructionData identical. The instruction format hashing does not yet
understand that all value operands are stored in the value list. We'll
fix that in a later patch.
Also convert IndirectCall, noting that Call and IndirectCall remain
separate instruction formats because they have different immediate
fields.
Add a new kind of instruction format that keeps all of its value
arguments in a value list. These value lists are all allocated out of
the dfg.value_lists memory pool.
Instruction formats with the value_list property set store *all* of
their value arguments in a single value list. There is no distinction
between fixed arguments and variable arguments.
Change the Call instruction format to use the value list representation
for its arguments.
This change is only the beginning. The intent is to eliminate the
boxed_storage instruction formats completely. Value lists use less
memory, and when the transition is complete, InstructionData will have a
trivial Drop implementation.
Add a Function::display() method which can include ISA-specific
information when printing the function.
If a test file has a unique ISA, use that in the `test cat`
implementation.
Add support for two new type variable functions: half_vector() and
double_vector().
Use these two instructions to break down unsupported SIMD types and
build them up again.
Insert conversion code that reconstructs the original function argument
types from the legalized ABI signature.
Add abi::legalize_abi_value(). This function is used when adapting code
to a legalized function signature.
These two methods can be use to rewrite the argument values to an EBB.
In particular, we need to rewrite the arguments to the entry block to be
compatible with a legalized function signature.
Reuse the put_ebb_arg() method in the implementation of
append_ebb_arg().
This entry point will be used for controlling ABI conventions when
legalizing.
Provide an empty implementation for RISC-V and let the other ISAs crash
in legalization.
This is just the scaffolding. We still need to:
- Rewrite the entry block arguments to match the legalized signature.
- Rewrite call and return instructions.
- Implement the legalize_signature() function for all ISAs.
- Add shared generic types to help with the legalize_signature()
functions.
Specify the location of arguments as well as the size of stack argument
array needed. The ABI annotations are optional, just like the value
locations.
Remove the Eq implementation for Signature which was only used by a
single parser test.