Give the user the option to sign and to authenticate function
return addresses with the operations introduced by the Pointer
Authentication extension to the Arm instruction set architecture.
Copyright (c) 2021, Arm Limited.
* Cranelift: Add instructions for getting the current stack/frame pointers and return address
This is the initial part of https://github.com/bytecodealliance/wasmtime/issues/4535
* x64: Remove `Amode::RbpOffset` and use `Amode::ImmReg` instead
We just special case getting operands from `Amode`s now.
* Fix s390x `get_return_address`; require `preserve_frame_pointers=true`
* Assert that `Amode::ImmRegRegShift` doesn't use rbp/rsp
* Handle non-allocatable registers in Amode::with_allocs
* Use "stack" instead of "r15" on s390x
* r14 is an allocatable register on s390x, so it shouldn't be used with `MovPReg`
The gen_copy_arg_to_regs routine currently ignores argument extension
flags when loading incoming arguments. This causes a problem with
stack arguments on big-endian systems, since the argument address
points to the word on the stack as extended by the caller, but the
generated code only loads the inner type from the address, causing
it to receive an incorrect value. (This happens to work on little-
endian systems.)
Fixed by loading extended arguments as full words.
* Cranellift: remove Baldrdash support and related features.
As noted in Mozilla's bugzilla bug 1781425 [1], the SpiderMonkey team
has recently determined that their current form of integration with
Cranelift is too hard to maintain, and they have chosen to remove it
from their codebase. If and when they decide to build updated support
for Cranelift, they will adopt different approaches to several details
of the integration.
In the meantime, after discussion with the SpiderMonkey folks, they
agree that it makes sense to remove the bits of Cranelift that exist
to support the integration ("Baldrdash"), as they will not need
them. Many of these bits are difficult-to-maintain special cases that
are not actually tested in Cranelift proper: for example, the
Baldrdash integration required Cranelift to emit function bodies
without prologues/epilogues, and instead communicate very precise
information about the expected frame size and layout, then stitched
together something post-facto. This was brittle and caused a lot of
incidental complexity ("fallthrough returns", the resulting special
logic in block-ordering); this is just one example. As another
example, one particular Baldrdash ABI variant processed stack args in
reverse order, so our ABI code had to support both traversal
orders. We had a number of other Baldrdash-specific settings as well
that did various special things.
This PR removes Baldrdash ABI support, the `fallthrough_return`
instruction, and pulls some threads to remove now-unused bits as a
result of those two, with the understanding that the SpiderMonkey folks
will build new functionality as needed in the future and we can perhaps
find cleaner abstractions to make it all work.
[1] https://bugzilla.mozilla.org/show_bug.cgi?id=1781425
* Review feedback.
* Fix (?) DWARF debug tests: add `--disable-cache` to wasmtime invocations.
The debugger tests invoke `wasmtime` from within each test case under
the control of a debugger (gdb or lldb). Some of these tests started to
inexplicably fail in CI with unrelated changes, and the failures were
only inconsistently reproducible locally. It seems to be cache related:
if we disable cached compilation on the nested `wasmtime` invocations,
the tests consistently pass.
* Review feedback.
* cranelift: Reorganize test suite
Group some SIMD operations by instruction.
* cranelift: Deduplicate some shift tests
Also, new tests with the mod behaviour
* aarch64: Lower shifts with mod behaviour
* x64: Lower shifts with mod behaviour
* wasmtime: Don't mask SIMD shifts
* [AArch64] Port SIMD narrowing to ISLE
Fvdemote, snarrow, unarrow and uunarrow.
Also refactor the aarch64 instructions descriptions to parameterize
on ScalarSize instead of using different opcodes.
The zero_value pure constructor has been introduced and used by the
integer narrow operations and it replaces, and extends, the compare
zero patterns.
Copright (c) 2022, Arm Limited.
* use short 'if' patterns
This enables more runtests to be executed on s390x. Doing so
uncovered a two back-end bugs, which are fixed as well:
- The result of cls was always off by one.
- The result of popcnt.i16 has uninitialized high bits.
In addition, I found a bug in the load-op-store.clif test case:
v3 = heap_addr.i64 heap0, v1, 4
v4 = iconst.i64 42
store.i32 v4, v3
This was clearly intended to perform a 32-bit store, but
actually performs a 64-bit store (it seems the type annotation
of the store opcode is ignored, and the type of the operand
is used instead). That bug did not show any noticable symptoms
on little-endian architectures, but broke on big-endian.
* cranelift: Restrict `br_table` to `i32` indices
In #4498 it was proposed that we should only accept `i32` indices
to `br_table`. The rationale for this is that larger types lead the
users to a false sense of flexibility (since we don't support jump
tables larger than u32's), and narrower types are not well tested
paths that would be safer if we removed them.
* cranelift: Reduce directly from i128 to i32 in Switch
Converted the existing implementations for the following opcodes to ISLE
on AArch64:
- `sqrt`
- `fneg`
- `fabs`
- `fpromote`
- `fdemote`
- `ceil`
- `floor`
- `trunc`
- `nearest`
Copyright (c) 2022 Arm Limited
On s390x, we do not have a frame pointer that can be used to chain
stack frames for easy unwinding. Instead, our ABI defines a stack
"backchain" mechanism that can be used to the same effect.
This PR uses that backchain mechanism to implement the new
preserve_frame_pointers flags introduced here:
https://github.com/bytecodealliance/wasmtime/pull/4469
Preserving frame pointers -- even inside leaf functions -- makes it easy to
capture the stack of a running program, without requiring any side tables or
metadata (like `.eh_frame` sections). Many sampling profilers and similar tools
walk frame pointers to capture stacks. Enabling this option will play nice with
those tools.
Converted the existing implementations for the following Opcodes to ISLE on AArch64:
- `fadd`
- `fsub`
- `fmul`
- `fdiv`
- `fmin`
- `fmax`
- `fmin_pseudo`
- `fmax_pseudo`
Copyright (c) 2022 Arm Limited
This adds full support for all Cranelift SIMD instructions
to the s390x target. Everything is matched fully via ISLE.
In addition to adding support for many new instructions,
and the lower.isle code to match all SIMD IR patterns,
this patch also adds ABI support for vector types.
In particular, we now need to handle the fact that
vector registers 8 .. 15 are partially callee-saved,
i.e. the high parts of those registers (which correspond
to the old floating-poing registers) are callee-saved,
but the low parts are not. This is the exact same situation
that we already have on AArch64, and so this patch uses the
same solution (the is_included_in_clobbers callback).
The bulk of the changes are platform-specific, but there are
a few exceptions:
- Added ISLE extractors for the Immediate and Constant types,
to enable matching the vconst and swizzle instructions.
- Added a missing accessor for call_conv to ABISig.
- Fixed endian conversion for vector types in data_value.rs
to enable their use in runtests on the big-endian platforms.
- Enabled (nearly) all SIMD runtests on s390x. [ Two test cases
remain disabled due to vector shift count semantics, see below. ]
- Enabled all Wasmtime SIMD tests on s390x.
There are three minor issues, called out via FIXMEs below,
which should be addressed in the future, but should not be
blockers to getting this patch merged. I've opened the
following issues to track them:
- Vector shift count semantics
https://github.com/bytecodealliance/wasmtime/issues/4424
- is_included_in_clobbers vs. link register
https://github.com/bytecodealliance/wasmtime/issues/4425
- gen_constant callback
https://github.com/bytecodealliance/wasmtime/issues/4426
All tests, including all newly enabled SIMD tests, pass
on both z14 and z15 architectures.
* Implement `iabs` in ISLE (AArch64)
Converts the existing implementation of `iabs` for AArch64 into ISLE,
and fixes support for `iabs` on scalar values.
Copyright (c) 2022 Arm Limited.
* Improve scalar `iabs` implementation.
Also introduces `CSNeg` instruction.
Copyright (c) 2022 Arm Limited
* Convert `scalar_to_vector` to ISLE (AArch64)
Converted the exisiting implementation of `scalar_to_vector` for AArch64 to
ISLE.
Copyright (c) 2022 Arm Limited
* Add support for floats and fix FpuExtend
- Added rules to cover `f32 -> f32x4` and `f64 -> f64x2` for
`scalar_to_vector`
- Added tests for `scalar_to_vector` on floats.
- Corrected an invalid instruction emitted by `FpuExtend` on 64-bit
values.
Copyright (c) 2022 Arm Limited
Introduce a new concept in the IR that allows a producer to create
dynamic vector types. An IR function can now contain global value(s)
that represent a dynamic scaling factor, for a given fixed-width
vector type. A dynamic type is then created by 'multiplying' the
corresponding global value with a fixed-width type. These new types
can be used just like the existing types and the type system has a
set of hard-coded dynamic types, such as I32X4XN, which the user
defined types map onto. The dynamic types are also used explicitly
to create dynamic stack slots, which have no set size like their
existing counterparts. New IR instructions are added to access these
new stack entities.
Currently, during codegen, the dynamic scaling factor has to be
lowered to a constant so the dynamic slots do eventually have a
compile-time known size, as do spill slots.
The current lowering for aarch64 just targets Neon, using a dynamic
scale of 1.
Copyright (c) 2022, Arm Limited.
@yuyang-ok reported via zulip that i128 overflow tests were:
1. different from the interpreter implementation
2. wrong on some of the test cases
This fixes both the tests and the aarch64 implementation and adds the
interpreter to the testsuite.
This defines the full set of 32 128-bit vector registers on s390x.
(Note that the VRs overlap the existing FPRs.) In addition, this
adds support to use all 32 vector registers to implement floating-
point operations, by using vector floating-point instructions with
the 'W' bit set to operate only on the first element.
This part of the vector instruction set mostly matches the old FP
instruction set, with two exceptions:
- There is no vector version of the COPY SIGN instruction. Instead,
now use a VECTOR SELECT with an appropriate bit mask to implement
the fcopysign operation.
- There are no vector version of the float <-> int conversion
instructions where source and target differ in bit size. Use
appropriate multiple conversion steps instead. This also requires
use of explicit checking to implement correct overflow handling.
As a side effect, this version now also implements the i8 / i16
variants of all conversions, which had been missing so far.
For all operations except those two above, we continue to use the
old FP instruction if applicable (i.e. if all operands happen to
have been allocated to the original FP register set), and use the
vector instruction otherwise.
This adds infrastructure to allow implementing call and return
instructions in ISLE, and migrates the s390x back-end.
To implement ABI details, this patch creates public accessors
for `ABISig` and makes them accessible in ISLE. All actual
code generation is then done in ISLE rules, following the
information provided by that signature.
[ Note that the s390x back end never requires multiple slots for
a single argument - the infrastructure to handle this should
already be present, however. ]
To implement loops in ISLE rules, this patch uses regular tail
recursion, employing a `Range` data structure holding a range
of integers to be looped over.
The previous `cls` code was producing wrong results when fed with a -1 i8.
The fix here is to sign extend instead of zero extending since we want
to keep the sign bit as one in order for it to be counted correctly
in the cls instruction
This also merges the interpreter only tests now that aarch64
correctly supports this instruction
* Upgrade to regalloc2 v0.2.3 to get bugfix from bytecodealliance/regalloc2#60.
* Update RELEASES.md.
* Update two compile tests based on slightly shifting regalloc output.
The current lowering helper for `cmpxchg` returns the literal RealReg
`rax` as its result. However, this breaks a number of invariants, and
eventually causes a regalloc panic if used as a blockparam arg (pinned
vregs cannot be used in this way).
In general we have to return regular vregs, not a RealReg, as results of
instructions during lowering. However #4223 added a helper for
`x64_cmpxchg` that returns a literal `rax`.
Fortunately we can do the right thing here by just giving a fresh vreg
to the instruction; the regalloc constraints mean that this vreg is
constrained to `rax` at the instruction (at its def/late point), so the
generator of the instruction need not worry about `rax` here.
If an address expression is given to `to_amode` that is completely
constant (no registers at all), then it will produce an `Amode` that has
the resulting constant as an offset, and `(invalid_reg)` as the base.
This is a side-effect of the way we build up the amode step-by-step --
we're waiting to see a register and plug it into the base field. If we
never get a reg though, we need to generate a constant zero into a
register and use that as the base. This PR adds a `finalize_amode`
helper to do just that.
Fixes#4234.
This resolves an edge-case where mul.i128 with an input that continues
to be live after the instruction could cause an invalid regalloc
constraint (basically, the regalloc did not previously support an
instruction use and def both being constrained to the same physical reg;
and the "mul" variant used for mul.i128 on x64 was the only instance of
such operands in Cranelift).
Causes two extra move instructions in the mul.i128 filetest, but that's
the price to pay for the slightly more general (works in all cases)
handling of the constraints.
RA2 recently removed the need for a dedicated scratch register for
cyclic moves (bytecodealliance/regalloc2#51). This has moderate positive
performance impact on function bodies that were register-constrained, as
it means that one more register is available. In Sightglass, I measured
+5-8% on `blake3-scalar`, at least among current benchmarks.
Previously, the pinned register (enabled by the `enable_pinned_reg`
Cranelift setting and used via the `get_pinned_reg` and `set_pinned_reg`
CLIF ops) was only used when Cranelift was embedded in SpiderMonkey, in
order to support a pinned heap register. SpiderMonkey has its own
calling convention in Cranelift (named after the integration layer,
"Baldrdash").
However, the feature is more general, and should be usable with the
default system calling convention too, e.g. SysV or Windows Fastcall.
This PR fixes the ABI code to properly treat the pinned register as a
globally allocated register -- and hence an implicit input and output to
every function, not saved/restored in the prologue/epilogue -- for SysV
on x86-64 and aarch64, and Fastcall on x86-64.
Fixes#4170.
* Upgrade to regalloc2 0.1.3.
This pulls in bytecodealliance/regalloc2#49, which slightly improves
codegen in some cases where a safepoint (for reference-typed values)
occurs in the same liverange as a register-constrained use. For
example, in bytecodealliance/wasmtime#3785, an extra move instruction
appeared and a callee-save register was used (necessitating a more
expensive prologue) because of suboptimal splitting heuristics, which
this PR fixes. The updated RA2 heuristics appear to have no measured
downsides in existing benchmarks and improve the manually-observed
codegen issue.
* Update filetests where regalloc2 improvement altered behavior with reftypes.
Current codegen had a number of logic errors confusing
NAND with AND WITH COMPLEMENT, and NOR with OR WITH COMPLEMENT.
Add support for the missing z15 instructions and fix logic.
This test was added between the last CI run on #4088 and its merge to
main, and the changes in #4088 (use of constants directly in instruction
via load from constant pool, rather than from a register initialized by
a separate instruction) cause it to fail now.
This PR alters the test to be invariant to regalloc and argument
decisions during lowering, as the test is really checking (per the
comment) that we get two cmoves without an intervening move. As such, it
just matches the instruction opcodes, irrespective of the arguments.
* Allow emitting u64 constants into constant pool.
* Use constant pool for constants on x64 that do not fit in a simm32 and are needed as a RegMem or RegMemImm.
* Fix rip-relative addressing bug in pinsrd emission.
In #3744, we identified that extra `mov` instructions were inserted in
between the `cmov` instructions that CLIF's `select` lowers to. The
switch to regalloc2 resolved this and this test checks that no
intervening `mov`s are inserted. Closes#3744.
The pretty-printing had swapped dst and src2; this was introduced when
we moved to RA2 (sorry about that! IMHO we should do something to
automate the mapping between regalloc arg collection and pretty
printing/emission).
`src2` comes at the end because it has a variable number of register
mentions; this is in line with how many of the other inst formats work.
Actual emitted code was never incorrect, just the pretty-printing.
Updated test golden outputs look correct to me now, including the one
that we saw was incorrect in #3945.
This PR refactors the x64 backend address-mode lowering to use an
incremental-build approach, where it considers each node in a tree of
`iadd`s that feed into a load/store address and, at each step, builds
the best possible `Amode`. It will combine an arbitrary number of
constant offsets (an extension beyond the current rules), and can
capture a left-shifted (scaled) index in any position of the tree
(another extension).
This doesn't have any measurable performance improvement on our Wasm
benchmarks in Sightglass, unfortunately, because the IR lowered from
wasm32 will do address computation in 32 bits and then `uextend` it to
add to the 64-bit heap base. We can't quite lift the 32-bit adds to 64
bits because this loses the wraparound semantics.
(We could label adds as "expected not to overflow", and allow *those* to
be lifted to 64 bit operations; wasm32 heap address computation should
fit this. This is `add nuw` (no unsigned wrap) in LLVM IR terms. That's
likely my next step.)
Nevertheless, (i) this generalizes the cases we can handle, which should
be a good thing, all other things being equal (and in this case, no
compile time impact was measured); and (ii) might benefit non-Wasm
frontends.
Currently, we have partial Spectre mitigation: we protect heap accesses
with dynamic bounds checks. Specifically, we guard against errant
accesses on the misspeculated path beyond the bounds-check conditional
branch by adding a conditional move that is also dependent on the
bounds-check condition. This data dependency on the condition is not
speculated and thus will always pick the "safe" value (in the heap case,
a NULL address) on the misspeculated path, until the pipeline flushes
and recovers onto the correct path.
This PR uses the same technique both for table accesses -- used to
implement Wasm tables -- and for jumptables, used to implement Wasm
`br_table` instructions.
In the case of Wasm tables, the cmove picks the table base address on
the misspeculated path. This is equivalent to reading the first table
entry. This prevents loads of arbitrary data addresses on the
misspeculated path.
In the case of `br_table`, the cmove picks index 0 on the misspeculated
path. This is safer than allowing a branch to an address loaded from an
index under misspeculation (i.e., it preserves control-flow integrity
even under misspeculation).
The table mitigation is controlled by a Cranelift setting, on by
default. The br_table mitigation is always on, because it is part of the
single lowering pseudoinstruction. In both cases, the impact should be
minimal: a single extra cmove in a (relatively) rarely-used operation.
The table mitigation is architecture-independent (happens during
legalization); the br_table mitigation has been implemented for both x64
and aarch64. (I don't know enough about s390x to implement this
confidently there, but would happily review a PR to do the same on that
platform.)