* Use inst_block instead of pp_block where possible
* Remove unused is_block_gap method
* Remove ProgramOrder trait
It only has a single implementation
* Rename Layout::cmp to pp_cmp to distinguish it from Ord::cmp
* Make pp_block non-generic
* Use rpo_cmp_block instead of rpo_cmp in the verifier
* Remove ProgramPoint
* Rename ExpandedProgramPoint to ProgramPoint
* Remove From<ValueDef> for ProgramPoint impl
* Rework the blockorder module to reuse the dom tree's cfg postorder
* Update domtree tests
* Treat br_table with an empty jump table as multiple block exits
* Bless tests
* Change branch_idx to succ_idx and fix the comment
Fix the postorder traversal computed by the `DominatorTree`. It was
recording nodes in the wrong order depending on the order child nodes
were visited. Consider the following program:
```
function %foo2(i8) -> i8 {
block0(v0: i8):
brif v0, block1, block2
block1:
return v0
block2:
jump block1
}
```
The postorder produced by the previous implementation was:
```
block2
block1
block0
```
Which is incorrect, as `block1` is branched to by `block2`. Changing the
branch order in the function would also change the postorder result,
yielding the expected order with `block1` emitted first.
The problem was that when pushing successor nodes onto the stack, the
old implementation would also mark them SEEN. This would then prevent
them from being pushed on the stack again in the future, which is
incorrect as they might be visited by other nodes that have not yet been
pushed. This causes nodes to potentially show up later in the postorder
traversal than they should.
This PR reworks the implementation of `DominatorTree::compute` to
produce an order where `block1` is always returned first, regardless of
the branch order in the original program.
Co-authored-by: Jamey Sharp <jsharp@fastly.com>
Move the storage for jump tables off of FunctionStencil and onto DataFlowGraph. This change is in service of #5731, making it easier to access the jump table data in the context of helpers like inst_values.
We don't have overlap in behavior for branch instructions anymore, so we can remove analyze_branch and instead match on the InstructionData directly.
Co-authored-by: Jamey Sharp <jamey@minilop.net>
Add a conditional branch instruction with two targets: brif. This instruction will eventually replace brz and brnz, as it encompasses the behavior of both.
This PR also changes the InstructionData layout for instruction formats that hold BlockCall values, taking the same approach we use for Value arguments. This allows branch_destination to return a slice to the BlockCall values held in the instruction, rather than requiring that we pattern match on InstructionData to fetch the then/else blocks.
Function generation for fuzzing has been updated to generate uses of brif, and I've run the cranelift-fuzzgen target locally for hours without triggering any new failures.
Add a new type BlockCall that represents the pair of a block name with arguments to be passed to it. (The mnemonic here is that it looks a bit like a function call.) Rework the implementation of jump, brz, and brnz to use BlockCall instead of storing the block arguments as varargs in the instruction's ValueList.
To ensure that we're processing block arguments from BlockCall values in instructions, three new functions have been introduced on DataFlowGraph that both sets of arguments:
inst_values - returns an iterator that traverses values in the instruction and block arguments
map_inst_values - applies a function to each value in the instruction and block arguments
overwrite_inst_values - overwrite all values in an instruction and block arguments with values from the iterator
Co-authored-by: Jamey Sharp <jamey@minilop.net>
This is a rebase of [1]. In the long term, we'll want to simplify these
analysis passes. For now, this is simple and will reduce the number of
instructions processed in certain cases.
[1] https://github.com/bytecodealliance/cranelift/pull/866
* Manually rename BasicBlock to BlockPredecessor
BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.
Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.
I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.
* Manually rename SSABuilder block types to avoid conflict
SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.
* Automatically rename 'Ebb' to 'Block' in *.rs
* Automatically rename 'EBB' to 'block' in *.rs
* Automatically rename 'ebb' to 'block' in *.rs
* Automatically rename 'extended basic block' to 'basic block' in *.rs
* Automatically rename 'an basic block' to 'a basic block' in *.rs
* Manually update comment for `Block`
`Block`'s wikipedia article required an update.
* Automatically rename 'an `Block`' to 'a `Block`' in *.rs
* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs
* Automatically rename 'ebb' to 'block' in *.clif
* Manually rename clif constant that contains 'ebb' as substring to avoid conflict
* Automatically rename filecheck uses of 'EBB' to 'BB'
'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'
* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif
* Automatically rename 'an block' to 'a block' in *.clif
* Fix broken testcase when function name length increases
Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.