* Enable the already-passing `bulk-memoryoperations/imports.wast` test
* Implement support for the `memory.init` instruction and passive data
This adds support for passive data segments and the `memory.init` instruction
from the bulk memory operations proposal. Passive data segments are stored on
the Wasm module and then `memory.init` instructions copy their contents into
memory.
* Implement the `data.drop` instruction
This allows wasm modules to deallocate passive data segments that it doesn't
need anymore. We keep track of which segments have not been dropped on an
`Instance` and when dropping them, remove the entry from the instance's hash
map. The module always needs all of the segments for new instantiations.
* Enable final bulk memory operations spec test
This requires special casing an expected error message for an `assert_trap`,
since the expected error message contains the index of an uninitialized table
element, but our trap implementation doesn't save that diagnostic information
and shepherd it out.
This adds support for the `table.copy` instruction from the bulk memory
proposal. It also supports multiple tables, which were introduced by the
reference types proposal.
Part of #928
* Remove global state for trap registration
There's a number of changes brought about in this commit, motivated by a
few things. One motivation was to remove an instance of using
`lazy_static!` in an effort to remove global state and encapsulate it
wherever possible. A second motivation came when investigating a
slowly-compiling wasm module (a bit too slowly) where a good chunk of
time was spent in managing trap registrations.
The specific change made here is that `TrapRegistry` is now stored
inside of a `Compiler` instead of inside a global. Additionally traps
are "bulk registered" for a module rather than one-by-one. This form of
bulk-registration allows optimizing the locks used here, where a lock is
only held for a module at-a-time instead of once-per-function.
With these changes the "unregister" logic has also been tweaked a bit
here and there to continue to work. As a nice side effect the `Compiler`
type now has one fewer field that requires actual mutability and has
been updated for multi-threaded compilation, nudging us closer to a
world where we can support multi-threaded compilation. Yay!
In terms of performance improvements, a local wasm test file that
previously took 3 seconds to compile is now 10% faster to compile,
taking ~2.7 seconds now.
* Perform trap resolution after unwinding
This avoids taking locks in signal handlers which feels a bit iffy...
* Remove `TrapRegistration::dummy()`
Avoid an case where you're trying to lookup trap information from a
dummy module for something that happened in a different module.
* Tweak some comments
* Improve panics/traps from imported functions
This commit performs a few refactorings and fixes a bug as well. The
changes here are:
* The `thread_local!` in the `wasmtime` crate for trap information is
removed. The thread local in the `wasmtime_runtime` crate is now
leveraged to transmit trap information.
* Panics in user-provided functions are now caught explicitly to be
carried across JIT code manually. Getting Rust panics unwinding
through JIT code is pretty likely to be super tricky and difficult to
do, so in the meantime we can get by with catching panics and resuming
the panic once we've resumed in Rust code.
* Various take/record trap apis have all been removed in favor of
working directly with `Trap` objects, where the internal trap object
has been expanded slightly to encompass user-provided errors as well.
This borrows a bit #839 and otherwise will...
Closes#848
* Rename `r#return` to `ret`
* Migrate back to `std::` stylistically
This commit moves away from idioms such as `alloc::` and `core::` as
imports of standard data structures and types. Instead it migrates all
crates to uniformly use `std::` for importing standard data structures
and types. This also removes the `std` and `core` features from all
crates to and removes any conditional checking for `feature = "std"`
All of this support was previously added in #407 in an effort to make
wasmtime/cranelift "`no_std` compatible". Unfortunately though this
change comes at a cost:
* The usage of `alloc` and `core` isn't idiomatic. Especially trying to
dual between types like `HashMap` from `std` as well as from
`hashbrown` causes imports to be surprising in some cases.
* Unfortunately there was no CI check that crates were `no_std`, so none
of them actually were. Many crates still imported from `std` or
depended on crates that used `std`.
It's important to note, however, that **this does not mean that wasmtime
will not run in embedded environments**. The style of the code today and
idioms aren't ready in Rust to support this degree of multiplexing and
makes it somewhat difficult to keep up with the style of `wasmtime`.
Instead it's intended that embedded runtime support will be added as
necessary. Currently only `std` is necessary to build `wasmtime`, and
platforms that natively need to execute `wasmtime` will need to use a
Rust target that supports `std`. Note though that not all of `std` needs
to be supported, but instead much of it could be configured off to
return errors, and `wasmtime` would be configured to gracefully handle
errors.
The goal of this PR is to move `wasmtime` back to idiomatic usage of
features/`std`/imports/etc and help development in the short-term.
Long-term when platform concerns arise (if any) they can be addressed by
moving back to `no_std` crates (but fixing the issues mentioned above)
or ensuring that the target in Rust has `std` available.
* Start filling out platform support doc