Currently, the `build.rs` script that generates Rust source from the
ISLE DSL will only do this generation if the `rebuild-isle` Cargo
feature is specified. By default, it is not. This is based on the
principle that we (the build script) do not modify the source tree as
managed by git; git-managed files are strictly a human-managed and
human-edited resource. By adding the opt-in Cargo feature, a developer
is requesting the build script to perform an explicit action. (In my
understanding at least, this principle comes from the general philosophy
of hermetic builds: the output should be a pure function of the input,
and part of this is that the input is read-only. If we modify the source
tree, then all bets are off.)
Unfortunately, requiring the opt-in feature also creates a footgun that
is easy to hit: if a developer modifies the ISLE DSL source, but forgets
to specify the Cargo feature, then the compiler will silently be built
successfully with stale source, and will silently exclude any changes
that were made.
The generated source is checked into git for a good reason: we want DSL
compiler to not affect build times for the overwhelmingly common case
that Cranelift is used as a dependency but the backends are not being
actively developed. (This overhead comes mainly from building `islec`
itself.)
So, what to do? This PR implements a middle ground first described in
[this conversation](https://github.com/bytecodealliance/wasmtime/pull/3506#discussion_r743113351), in which we:
- Generate a hash (SHA-512) of the ISLE DSL source and produce a
"manifest" of ISLE inputs alongside the generated source; and
- Always read the ISLE DSL source, and see if the manifest is still
valid, on builds that do not have the opt-in "rebuild" feature.
This allows us to know whether the ISLE compiler output would have been
the same (modulo changes to the DSL compiler itself, which are
out-of-scope here), without actually building the ISLE compiler and
running it.
If the compiler-backend developer modifies an ISLE source file and then
tries to build `cranelift-codegen` without adding the `rebuild-isle`
Cargo feature, they get the following output:
```text
Error: the ISLE source files that resulted in the generated Rust source
* src/isa/x64/lower/isle/generated_code.rs
have changed but the generated source was not rebuilt! These ISLE source
files are:
* src/clif.isle
* src/prelude.isle
* src/isa/x64/inst.isle
* src/isa/x64/lower.isle
Please add `--features rebuild-isle` to your `cargo build` command
if you wish to rebuild the generated source, then include these changes
in any git commits you make that include the changes to the ISLE.
For example:
$ cargo build -p cranelift-codegen --features rebuild-isle
(This build script cannot do this for you by default because we cannot
modify checked-into-git source without your explicit opt-in.)
```
which will tell them exactly what they need to do to fix the problem!
Note that I am leaving the "Rebuild ISLE" CI job alone for now, because
otherwise, we are trusting whomever submits a PR to generate the correct
generated source. In other words, the manifest is a communication from
the checked-in tree to the developer, but we still need to verify that
the checked-in generated Rust source and the manifest are correct with
respect to the checked-in ISLE source.
On the build side, this commit introduces two things:
1. The automatic generation of various ISLE definitions for working with
CLIF. Specifically, it generates extern type definitions for clif opcodes and
the clif instruction data `enum`, as well as extractors for matching each clif
instructions. This happens inside the `cranelift-codegen-meta` crate.
2. The compilation of ISLE DSL sources to Rust code, that can be included in the
main `cranelift-codegen` compilation.
Next, this commit introduces the integration glue code required to get
ISLE-generated Rust code hooked up in clif-to-x64 lowering. When lowering a clif
instruction, we first try to use the ISLE code path. If it succeeds, then we are
done lowering this instruction. If it fails, then we proceed along the existing
hand-written code path for lowering.
Finally, this commit ports many lowering rules over from hand-written,
open-coded Rust to ISLE.
In the process of supporting ISLE, this commit also makes the x64 `Inst` capable
of expressing SSA by supporting 3-operand forms for all of the existing
instructions that only have a 2-operand form encoding:
dst = src1 op src2
Rather than only the typical x86-64 2-operand form:
dst = dst op src
This allows `MachInst` to be in SSA form, since `dst` and `src1` are
disentangled.
("3-operand" and "2-operand" are a little bit of a misnomer since not all
operations are binary operations, but we do the same thing for, e.g., unary
operations by disentangling the sole operand from the result.)
There are two motivations for this change:
1. To allow ISLE lowering code to have value-equivalence semantics. We want ISLE
lowering to translate a CLIF expression that evaluates to some value into a
`MachInst` expression that evaluates to the same value. We want both the
lowering itself and the resulting `MachInst` to be pure and referentially
transparent. This is both a nice paradigm for compiler writers that are
authoring and maintaining lowering rules and is a prerequisite to any sort of
formal verification of our lowering rules in the future.
2. Better align `MachInst` with `regalloc2`'s API, which requires that the input
be in SSA form.
Instead, when the `rebuild-peephole-optimizers` feature is enabled, rebuild them
the first time they are used. This allows peepmatic to run when Cranelift's
`Opcode` is defined and available, which paves the way forward for:
* merging `peepmatic_runtime::operator::Operator` and Cranelift's `Opcode` (we
are wasting a bunch of cycles converting between the two of them), and
* supporting vcode optimizations in `peepmatic`.
Before this patch, running the x64 new backend would require both
compiling with --features experimental_x64 and running with
`use_new_backend`.
This patches changes this behavior so that the runtime flag is not
needed anymore: using the feature flag will enforce usage of the new
backend everywhere, making using and testing it much simpler:
cargo run --features experimental_x64 ;; other CLI options/flags
This also gives a hint at what the meta language generation would look
like after switching to the new backend.
Compiling only with the x64 codegen flag gives a nice compile time speedup.
This ports all of the identity, no-op, simplification, and canonicalization
related optimizations over from being hand-coded to the `peepmatic` DSL. This
does not handle the branch-to-branch optimizations or most of the
divide-by-constant optimizations.