This end result was previously enacted by carrying a `SourceLoc` on
every load/store, which was somewhat cumbersome, and only indirectly
encoded metadata about a memory reference (can it trap) by its presence
or absence. We have a type for this -- `MemFlags` -- that tells us
everything we might want to know about a load or store, and we should
plumb it through to code emission instead.
This PR attaches a `MemFlags` to an `Amode` on x64, and puts it on load
and store `Inst` variants on aarch64. These two choices seem to factor
things out in the nicest way: there are relatively few load/store insts
on aarch64 but many addressing modes, while the opposite is true on x64.
This PR makes use of the support in #2366 for sinking effectful
instructions and merging them with consumers. In particular, on x86, we
want to make use of the ability of many instructions to load one operand
directly from memory. That is, instead of this:
```
movq 0(%rdi), %rax
addq %rax, %rbx
```
we want to generate this:
```
addq 0(%rdi), %rax
```
As described in more detail in #2366, sinking and merging the load is
only possible under certain conditions. In particular, we need to ensure
that the use is the *only* use (otherwise the load happens more than
once), and we need to ensure that it does not move across other
effectful ops (see #2366 for how we ensure this).
This change is actually fairly simple, given that all the framework is
in place: we simply pattern-match a load on one operand of an ALU
instruction that takes an RMI (reg, mem, or immediate) operand, and
generate the mem form when we match.
Also makes a drive-by improvement in the x64 backend to use
statically-monomorphized `LowerCtx` types rather than a `&mut dyn
LowerCtx`.
On `bz2.wasm`, this results in ~1% instruction-count reduction. More is
likely possible by following up with other instructions that can merge
memory loads as well.
This PR updates the "coloring" scheme that accounts for side-effects in
the MachInst lowering logic. As a result, the new backends will now be
able to merge effectful operations (such as memory loads) *into* other
operations; previously, only the other way (pure ops merged into
effectful ops) was possible. This will allow, for example, a load+ALU-op
combination, as is common on x86. It should even allow a load + ALU-op +
store sequence to merge into one lowered instruction.
The scheme arose from many fruitful discussions with @julian-seward1
(thanks!); significant credit is due to him for the insights here.
The first insight is that given the right basic conditions, i.e. that
the root instruction is the only use of an effectful instruction's
result, all we need is that the "color" of the effectful instruction is
*one less* than the color of the current instruction. It's easier to
think about colors on the program points between instructions: if the
color coming *out* of the first (effectful def) instruction and *in* to
the second (effectful or effect-free use) instruction are the same, then
they can merge. Basically the color denotes a version of global state;
if the same, then no other effectful ops happened in the meantime.
The second insight is that we can keep state as we scan, tracking the
"current color", and *update* this when we sink (merge) an op. Hence
when we sink a load into another op, we effectively *re-color* every
instruction it moved over; this may allow further sinks.
Consider the example (and assume that we consider loads effectful in
order to conservatively ensure a strong memory model; otherwise, replace
with other effectful value-producing insts):
```
v0 = load x
v1 = load y
v2 = add v0, 1
v3 = add v1, 1
```
Scanning from bottom to top, we first see the add producing `v3` and we
can sink the load producing `v1` into it, producing a load + ALU-op
machine instruction. This is legal because `v1` moves over only `v2`,
which is a pure instruction. Consider, though, `v2`: under a simple
scheme that has no other context, `v0` could not sink to `v2` because it
would move over `v1`, another load. But because we already sunk `v1`
down to `v3`, we are free to sink `v0` to `v2`; the update of the
"current color" during the scan allows this.
This PR also cleans up the `LowerCtx` interface a bit at the same time:
whereas previously it always gave some subset of (constant, mergeable
inst, register) directly from `LowerCtx::get_input()`, it now returns
zero or more of (constant, mergable inst) from
`LowerCtx::maybe_get_input_as_source_or_const()`, and returns the
register only from `LowerCtx::put_input_in_reg()`. This removes the need
to explicitly denote uses of the register, so it's a little safer.
Note that this PR does not actually make use of the new ability to merge
loads into other ops; that will come in future PRs, especially to
optimize the `x64` backend by using direct-memory operands.
`lucetc` currently *almost*, but not quite, works with the new x64
backend; the only missing piece is support for the particular
instructions emitted as part of its prologue stack-check.
We do not normally see `brff`, `brif`, or `ifcmp_sp` in CLIF generated by
`cranelift-wasm` without the old-backend legalization rules, so these
were not supported in the new x64 backend as they were not necessary for
Wasm MVP support. Using them resulted in an `unimplemented!()` panic.
This PR adds support for `brff` and `brif` analogously to how AArch64
implements them, by pattern-matching the `ifcmp` / `ffcmp` directly.
Then `ifcmp_sp` is a straightforward variant of `ifcmp`.
Along the way, this also removes the notion of "fallthrough block" from
the branch-group lowering method; instead, `fallthrough` instructions
are handled as normal branches to their explicitly-provided targets,
which (in the original CLIF) match the fallthrough block. The reason for
this is that the block reordering done as part of lowering can change
the fallthrough block. We were not using `fallthrough` instructions in
the output produced by `cranelift-wasm`, so this, too, was not
previously caught.
With these changes, the `lucetc` crate in Lucet passes all tests with
the `x64` feature-flag added to its `cranelift-codegen` dependency.
In existing MachInst backends, many instructions -- any that can trap or
result in a relocation -- carry `SourceLoc` values in order to propagate
the location-in-original-source to use to describe resulting traps or
relocation errors.
This is quite tedious, and also error-prone: it is likely that the
necessary plumbing will be missed in some cases, and in any case, it's
unnecessarily verbose.
This PR factors out the `SourceLoc` handling so that it is tracked
during emission as part of the `EmitState`, and plumbed through
automatically by the machine-independent framework. Instruction emission
code that directly emits trap or relocation records can query the
current location as necessary. Then we only need to ensure that memory
references and trap instructions, at their (one) emission point rather
than their (many) lowering/generation points, are wired up correctly.
This does have the side-effect that some loads and stores that do not
correspond directly to user code's heap accesses will have unnecessary
but harmless trap metadata. For example, the load that fetches a code
offset from a jump table will have a 'heap out of bounds' trap record
attached to it; but because it is bounds-checked, and will never
actually trap if the lowering is correct, this should be harmless. The
simplicity improvement here seemed more worthwhile to me than plumbing
through a "corresponds to user-level load/store" bit, because the latter
is a bit complex when we allow for op merging.
Closes#2290: though it does not implement a full "metadata" scheme as
described in that issue, this seems simpler overall.
This approach suffers from memory-size bloat during compile time due to the desire to de-duplicate the constants emitted and reduce runtime memory-size. As a first step, though, this provides an end-to-end mechanism for constants to be emitted in the MachBuffer islands.
The changes in https://github.com/bytecodealliance/wasmtime/pull/2278 added `SourceLoc`s to several x64 `Inst` variants; between when that PR was last run in CI and when it was merged, new instructions were added that require this new parameter. This change adds the parameter in order to fix CI.
In order to register traps for `load_splat`, several instruction formats need knowledge of `SourceLoc`s; however, since the x64 backend does not correctly and completely register traps for `RegMem::Mem` variants I opened https://github.com/bytecodealliance/wasmtime/issues/2290 to discuss and resolve this issue. In the meantime, the current behavior (i.e. remaining largely unaware of `SourceLoc`s) is retained.
This change abstracts away (from the perspective of the new backend) how immediate values are stored in InstructionData. It gathers large immediates from necessary places (e.g. constant pool) and delegates to `InstructionData::imm_value` for the rest. This refactor only touches original users of `LowerCtx::get_immediate` but a future change could do the same for any place the new backend is accessing InstructionData directly to retrieve immediates.
This PR updates the AArch64 ABI implementation so that it (i) properly
respects that v8-v15 inclusive have callee-save lower halves, and
caller-save upper halves, by conservatively approximating (to full
registers) in the appropriate directions when generating prologue
caller-saves and when informing the regalloc of clobbered regs across
callsites.
In order to prevent saving all of these vector registers in the prologue
of every non-leaf function due to the above approximation, this also
makes use of a new regalloc.rs feature to exclude call instructions'
writes from the clobber set returned by register allocation. This is
safe whenever the caller and callee have the same ABI (because anything
the callee could clobber, the caller is allowed to clobber as well
without saving it in the prologue).
Fixes#2254.
This approach is not the best but avoids an extra instruction; perhaps at some point, as mentioned in https://github.com/bytecodealliance/wasmtime/pull/2248, we will add the extra instruction or refactor things in such a way that this `Inst` variant is unnecessary.
In particular:
- try to optimize the integer emission into a 32-bit emission, when the
high bits are all zero, and stop relying on the caller of `imm_r` to
ensure this.
- rename `Inst::imm_r`/`Inst::Imm_R` to `Inst::imm`/`Inst::Imm`.
- generate a sign-extending mov 32-bit immediate to 64-bits, whenever
possible.
- fix a few places where the previous commit did introduce the
generation of zero-constants with xor, when calling `put_input_to_reg`,
thus clobbering the flags before they were read.