* x64: clean up regalloc-related semantics on several instructions.
This PR removes all uses of "modify" operands on instructions in the x64
backend, and also removes all uses of "pinned vregs", or vregs that are
explicitly tied to particular physical registers. In place of both of
these mechanisms, which are legacies of the old regalloc design and
supported via compatibility code, the backend now uses operand
constraints. This is more flexible as it allows the regalloc to see the
liveranges and constraints without "reverse-engineering" move instructions.
Eventually, after removing all such uses (including in other backends
and by the ABI code), we can remove the compatibility code in regalloc2,
significantly simplifying its liverange-construction frontend and
thus allowing for higher confidence in correctness as well as possibly a
bit more compilation speed.
Curiously, there are a few extra move instructions now; they are likely
poor splitting decisions and I can try to chase these down later.
* Fix cranelift-codegen tests.
* Review feedback.
* cranelift: Implement `bnot` in interpreter
* cranelift: Register all functions in test file for interpreter
* cranelift: Relax signature checking for bools and vectors
Ported the existing implementation of `fcmp` for AArch64 to ISLE.
This also ports the `lower_vector_comparison` method to ISLE.
Copyright (c) 2022 Arm Limited
This retains `lower_amode` in the handwritten code (@akirilov-arm
reports that there is an upcoming patch to port this), but tweaks it
slightly to take a `Value` rather than an `Inst`.
Ensure that constants generated for the memory case of XmmMem values are always 16 bytes, ensuring that we don't accidantally perform an unaligned load.
Fixes#4761
* cranelift: Change test runner order
Changes the ordering of runtests to run per target and then per function.
This change doesn't do a lot by itself, but helps future refactorings of runtests.
* cranelift: Rename SingleFunctionCompiler to TestCaseCompiler
* cranelift: Skip runtests per target instead of per run
* cranelift: Deduplicate test names
With the upcoming changes to the runtest infrastructure we require unique ExtNames for all tests.
Note that for test names we have a 16 character limit on test names, and must be unique within those 16 characters.
* cranelift: Add TestFileCompiler to runtests
TestFileCompiler allows us to compile the entire file once, and then call the trampolines for each test.
The previous code was compiling the function for each invocation of a test.
* cranelift: Deduplicate ExtName for avg_round tests
* cranelift: Rename functions as they are defined.
The JIT internally only deals with User functions, and cannot link test name funcs.
This also caches trampolines by signature.
* cranelift: Preserve original name when reporting errors.
* cranelift: Rename aarch64 test functions
* cranelift: Add `call` and `call_indirect` tests!
* cranelift: Add pauth runtests for aarch64
* cranelift: Rename duplicate s390x tests
* cranelift: Delete `i128_bricmp_of` function from i128-bricmp
It looks like we forgot to delete it when it was moved to
`i128-bricmp-overflow`, and since it didn't have a run invocation
it was never compiled.
However, s390x does not support this, and panics when lowering.
* cranelift: Add `colocated` call tests
* cranelift: Rename *more* `s390x` tests
* cranelift: Add pauth + sign_return_address call tests
* cranelift: Undeduplicate test names
With the latest main changes we now support *unlimited* length test names.
This commit reverts:
52274676ff631c630f9879dd32e756566d3e700f
7989edc172493547cdf63e180bb58365e8a43a42
25c8a8395527d98976be6a34baa3b0b214776739
792e8cfa8f748077f9d80fe7ee5e958b7124e83b
* cranelift: Add LibCall tests
* cranelift: Revert more test names
These weren't auto reverted by the previous revert.
* cranelift: Disable libcall tests for aarch64
* cranelift: Runtest fibonacci tests
* cranelift: Misc cleanup
Lower extractlane, scalar_to_vector and splat in ISLE.
This PR also makes some changes to the SinkableLoad api
* change the return type of sink_load to RegMem as there are more functions available for dealing with RegMem
* add reg_mem_to_reg_mem_imm and register it as an automatic conversion
Lower `shuffle` and `swizzle` in ISLE.
This PR surfaced a bug with the lowering of `shuffle` when avx512vl and avx512vbmi are enabled: we use `vpermi2b` as the implementation, but panic if the immediate shuffle mask contains any out-of-bounds values. The behavior when the avx512 extensions are not present is that out-of-bounds values are turned into `0` in the result.
I've resolved this by detecting when the shuffle immediate has out-of-bounds indices in the avx512-enabled lowering, and generating an additional mask to zero out the lanes where those indices occur. This brings the avx512 case into line with the semantics of the `shuffle` op: 94bcbe8446/cranelift/codegen/meta/src/shared/instructions.rs (L1495-L1498)
* Port `Fcopysign`..``FcvtToSintSat` to ISLE (AArch64)
Ported the existing implementations of the following opcodes to ISLE on
AArch64:
- `Fcopysign`
- Also introduced missing support for `fcopysign` on vector values, as
per the docs.
- This introduces the vector encoding for the `SLI` machine
instruction.
- `FcvtToUint`
- `FcvtToSint`
- `FcvtFromUint`
- `FcvtFromSint`
- `FcvtToUintSat`
- `FcvtToSintSat`
Copyright (c) 2022 Arm Limited
* Document helpers and abstract conversion checks
* x64: Mask shift amounts for small types
* cranelift: Disable i128 shifts in fuzzer again
They are fixed. But we had a bunch of fuzzgen issues come in, and we don't want to accidentaly mark them as fixed
* cranelift: Avoid masking shifts for 32 and 64 bit cases
* cranelift: Add const shift tests and fix them
* cranelift: Remove const `rotl` cases
Now that `put_masked_in_imm8_gpr` works properly we can simplify rotl/rotr
In order to keep the `ExternalName` enum small, the `TestcaseName`
struct was limited to 17 bytes: a 1 byte length and a 16 byte buffer.
Due to alignment, that made `ExternalName` 20 bytes.
That fixed-size buffer means that the names of functions in Cranelift
filetests are truncated to fit, which limits our ability to give tests
meaningful names. And I think meaningful names are important in tests.
This patch replaces the inline `TestcaseName` buffer with a
heap-allocated slice. We don't care about performance for test names, so
an indirection out to the heap is fine in that case. But we do care
somewhat about the size of `ExternalName` when it's used during
compiles.
On 64-bit systems, `Box<[u8]>` is 16 bytes, so `TestcaseName` gets one
byte smaller. Unfortunately, its alignment is 8 bytes, so `ExternalName`
grows from 20 to 24 bytes.
According to `valgrind --tool=dhat`, this change has very little effect
on compiler performance. Building wasmtime with `--no-default-features
--release`, and compiling the pulldown-cmark benchmark from Sightglass,
I measured these differences between `main` and this patch:
- total number of allocations didn't change (`ExternalName::TestCase` is
not used in normal compiles)
- 592 more bytes allocated over the process lifetime, out of 171.5MiB
- 320 more bytes allocated at peak heap size, out of 12MiB
- 0.24% more instructions executed
- 16,987 more bytes written
- 12,120 _fewer_ bytes read
Lower stack_addr, udiv, sdiv, urem, srem, umulhi, and smulhi in ISLE.
For udiv, sdiv, urem, and srem I opted to move the original lowering into an extern constructor, as the interactions with rax and rdx for the div instruction didn't seem meaningful to implement in ISLE. However, I'm happy to revisit this choice and move more of the embedding into ISLE.
Ported the existing implementations of the following opcodes for AArch64
to ISLE, and implemented support for 64-bit vectors (per the docs):
- `SwidenLow`
- `SwidenHigh`
- `UwidenLow`
- `UwidenHigh`
Also ported `WideningPairwiseDotProductS` as-is.
Copyright (c) 2022 Arm Limited
* Port `vconst` to ISLE (AArch64)
Ported the existing implementation of `vconst` to ISLE for AArch64, and
added support for 64-bit vector constants.
Also introduced 64-bit `vconst` support to the interpreter.
Copyright (c) 2022 Arm Limited
* Replace if-chains with match statements
Copyright (c) 2022 Arm Limited
Fixes#4736
Fix lowerings that were using values as both a Reg and a RegMem, making it look like a load could be sunk while its value in a register was still being used. Also add an assert that checks that loads that are sunk are never used.
When trying to read generated CLIF, it's nice to be able to see at a
glance that some of the operands are defined by `iconst` and similar
instructions, without having to go find each operand's definition
manually.
This fixes two problems: minimum symbol alignment for the LARL
instruction, and alignment requirements for LRL/LGRL etc.
The first problem is that the LARL instruction used to load a
symbol address (PC relative) requires that the target symbol
is at least 2-byte aligned. This is always guaranteed for code
symbols (all instructions must be 2-aligned anyway), but not
necessarily for data symbols.
Other s390x compilers fix this problem by ensuring that all
global symbols are always emitted with a minimum 2-byte
alignment. This patch introduces an equivalent mechanism
for cranelift:
- Add a symbol_alignment routine to TargetIsa, similar to the
existing code_section_alignment routine.
- Respect symbol_alignment as minimum alignment for all symbols
emitted in the object backend (code and data).
The second problem is that PC-relative instructions that
directly *access* data (like LRL/LGRL, STRL/STGRL etc.)
not only have the 2-byte requirement like LARL, but actually
require that their memory operand is *naturally* aligned
(i.e. alignment is at least the size of the access).
This property (natural alignment for memory accesses) is
supposed to be provided by the "aligned" flag in MemFlags;
however, this is not implemented correctly at the moment.
To fix this, this patch:
- Only emits PC-relative memory access instructions if the
"aligned" flag is set in the associated MemFlags.
- Fixes a bug in emit_small_memory_copy and emit_small_memset
which currently set the aligned flag unconditionally, ignoring
the actual alignment info passed by their caller.
Tested with wasmtime and cg_clif.
* Add a test for iadd_pairwise with swiden input
* Implement iadd_pairwise for swiden_{low,high} input
* Add a test case for iadd_pairwise with uwiden input
* Implement iadd_pairwise with uwiden
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime.
After the suggestion of Chris, `Function` has been split into mostly two parts:
- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.
Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:
- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
- `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
- The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.
The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.
A basic fuzz target has been introduced that tries to do the bare minimum:
- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
- This last check is less efficient and less likely to happen, so probably should be rethought a bit.
Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.
Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement.
Fixes#4155.
* cranelift: Remove shifts-small-types runtests
These were moved to the main shifts file in #4519 but this file was accidentaly left in tree.
It also fixes the missing sshr_i8_i8 testcase
* cranelift: Add shifts to fuzzer
* cranelift: Add extends to fuzzer
* Add a test for the existing behavior of fcvt_from_unit
* Migrate the I8, I16, I32 cases of fcvt_from_uint
* Implement the I64 case of fcvt_from_uint
* Add a test for the existing behavior of fcvt_from_uint.f64x2
* Migrate fcvt_from_uint.f64x2 to ISLE
* Lower the last case of `fcvt_from_uint`
* Add a test for `fcvt_from_uint`
* Finish lowering fcmp_from_uint
* Format
This implements the s390x back-end portion of the solution for
https://github.com/bytecodealliance/wasmtime/issues/4566
We now support both big- and little-endian vector lane order
in code generation. The order used for a function is determined
by the function's ABI: if it uses a Wasmtime ABI, it will use
little-endian lane order, and big-endian lane order otherwise.
(This ensures that all raw_bitcast instructions generated by
both wasmtime and other cranelift frontends can always be
implemented as a no-op.)
Lane order affects the implementation of a number of operations:
- Vector immediates
- Vector memory load / store (in big- and little-endian variants)
- Operations explicitly using lane numbers
(insertlane, extractlane, shuffle, swizzle)
- Operations implicitly using lane numbers
(iadd_pairwise, narrow/widen, promote/demote, fcvt_low, vhigh_bits)
In addition, when calling a function using a different lane order,
we need to lane-swap all vector values passed or returned in registers.
A small number of changes to common code were also needed:
- Ensure we always select a Wasmtime calling convention on s390x
in crates/cranelift (func_signature).
- Fix vector immediates for filetests/runtests. In PR #4427,
I attempted to fix this by byte-swapping the V128 value, but
with the new scheme, we'd instead need to perform a per-lane
byte swap. Since we do not know the actual type in write_to_slice
and read_from_slice, this isn't easily possible.
Revert this part of PR #4427 again, and instead just mark the
memory buffer as little-endian when emitting the trampoline;
the back-end will then emit correct code to load the constant.
- Change a runtest in simd-bitselect-to-vselect.clif to no longer
make little-endian lane order assumptions.
- Remove runtests in simd-swizzle.clif that make little-endian
lane order assumptions by relying on implicit type conversion
when using a non-i16x8 swizzle result type (this feature should
probably be removed anyway).
Tested with both wasmtime and cg_clif.
* Fix sret for AArch64
AArch64 requires the struct return address argument to be stored in the x8
register. This register is never used for regular arguments.
* Add extra sret tests for x86_64
Implement the tls_value for s390 in the ELF general-dynamic mode.
Notable differences to the x86_64 implementation are:
- We use a __tls_get_offset libcall instead of __tls_get_addr.
- The current thread pointer (stored in a pair of access registers)
needs to be added to the result of __tls_get_offset.
- __tls_get_offset has a variant ABI that requires the address of
the GOT (global offset table) is passed in %r12.
This means we need a new libcall entries for __tls_get_offset.
In addition, we also need a way to access _GLOBAL_OFFSET_TABLE_.
The latter is a "magic" symbol with a well-known name defined
by the ABI and recognized by the linker. This patch introduces
a new ExternalName::KnownSymbol variant to support such names
(originally due to @afonso360).
We also need to emit a relocation on a symbol placed in a
constant pool, as well as an extra relocation on the call
to __tls_get_offset required for TLS linker optimization.
Needed by the cg_clif frontend.
* cranelift: Upgrade libm to 0.2.4
This resolves an issue with incorrect fmaf on the x86_64-pc-windows-gnu target under some inputs.
See: #4517
* supply-chain: Vet `libm` 0.2.4
* cranelift: Use JIT in runtests
Using `cranelift-jit` in run tests allows us to preform relocations and
libcalls. This is important since some instruction lowerings fallback
to libcall's when an extension is missing, or when it's too complicated
to implement manually.
This is also a first step to being able to test `call`'s between functions
in the runtest suite. It should also make it easier to eventually test
TLS relocations, symbol resolution and ABI's.
Another benefit of this is that we also get to test the JIT more, since
it now runs the runtests, and gets some fuzzing via `fuzzgen` (which
uses the `SingleFunctionCompiler`).
This change causes regressions in terms of runtime for the filetests.
I haven't done any serious benchmarking but what I've been seeing is
that it now takes about ~3 seconds to run the testsuite while it
previously took around 2 seconds.
* Add FMA tests for X86