* Rework the blockorder module to reuse the dom tree's cfg postorder
* Update domtree tests
* Treat br_table with an empty jump table as multiple block exits
* Bless tests
* Change branch_idx to succ_idx and fix the comment
* Remove trailing whitespace in `lower.isle` files
* Legalize the `band_not` instruction into simpler form
This commit legalizes the `band_not` instruction into `band`-of-`bnot`,
or two instructions. This is intended to assist with egraph-based
optimizations where the `band_not` instruction doesn't have to be
specifically included in other bit-operation-patterns.
Lowerings of the `band_not` instruction have been moved to a
specialization of the `band` instruction.
* Legalize `bor_not` into components
Same as prior commit, but for the `bor_not` instruction.
* Legalize bxor_not into bxor-of-bnot
Same as prior commits. I think this also ended up fixing a bug in the
s390x backend where `bxor_not x y` was actually translated as `bnot
(bxor x y)` by accident given the test update changes.
* Simplify not-fused operands for riscv64
Looks like some delegated-to rules have special-cases for "if this
feature is enabled use the fused instruction" so move the clause for
testing the feature up to the lowering phase to help trigger other rules
if the feature isn't enabled. This should make the riscv64 backend more
consistent with how other backends are implemented.
* Remove B{and,or,xor}Not from cost of egraph metrics
These shouldn't ever reach egraphs now that they're legalized away.
* Add an egraph optimization for `x^-1 => ~x`
This adds a simplification node to translate xor-against-minus-1 to a
`bnot` instruction. This helps trigger various other optimizations in
the egraph implementation and also various backend lowering rules for
instructions. This is chiefly useful as wasm doesn't have a `bnot`
equivalent, so it's encoded as `x^-1`.
* Add a wasm test for end-to-end bitwise lowerings
Test that end-to-end various optimizations are being applied for input
wasm modules.
* Specifically don't self-update rustup on CI
I forget why this was here originally, but this is failing on Windows
CI. In general there's no need to update rustup, so leave it as-is.
* Cleanup some aarch64 lowering rules
Previously a 32/64 split was necessary due to the `ALUOp` being different
but that's been refactored away no so there's no longer any need for
duplicate rules.
* Narrow a x64 lowering rule
This previously made more sense when it was `band_not` and rarely used,
but be more specific in the type-filter on this rule that it's only
applicable to SIMD types with lanes.
* Simplify xor-against-minus-1 rule
No need to have the commutative version since constants are already
shuffled right for egraphs
* Optimize band-of-bnot when bnot is on the left
Use some more rules in the egraph algebraic optimizations to
canonicalize band/bor/bxor with a `bnot` operand to put the operand on
the right. That way the lowerings in the backends only have to list the
rule once, with the operand on the right, to optimize both styles of
input.
* Add commutative lowering rules
* Update cranelift/codegen/src/isa/x64/lower.isle
Co-authored-by: Jamey Sharp <jamey@minilop.net>
---------
Co-authored-by: Jamey Sharp <jamey@minilop.net>
Improve the generated code for unordered floating point comparisons by negating the comparison and inveritng the branches. This allows us to pick the unordered versions, which generate significantly better code.
Add a conditional branch instruction with two targets: brif. This instruction will eventually replace brz and brnz, as it encompasses the behavior of both.
This PR also changes the InstructionData layout for instruction formats that hold BlockCall values, taking the same approach we use for Value arguments. This allows branch_destination to return a slice to the BlockCall values held in the instruction, rather than requiring that we pattern match on InstructionData to fetch the then/else blocks.
Function generation for fuzzing has been updated to generate uses of brif, and I've run the cranelift-fuzzgen target locally for hours without triggering any new failures.
Add a new type BlockCall that represents the pair of a block name with arguments to be passed to it. (The mnemonic here is that it looks a bit like a function call.) Rework the implementation of jump, brz, and brnz to use BlockCall instead of storing the block arguments as varargs in the instruction's ValueList.
To ensure that we're processing block arguments from BlockCall values in instructions, three new functions have been introduced on DataFlowGraph that both sets of arguments:
inst_values - returns an iterator that traverses values in the instruction and block arguments
map_inst_values - applies a function to each value in the instruction and block arguments
overwrite_inst_values - overwrite all values in an instruction and block arguments with values from the iterator
Co-authored-by: Jamey Sharp <jamey@minilop.net>
* add clif-util compile option to output object file
* switch from a box to a borrow
* update objectmodule tests to use borrowed isa
* put targetisa into an arc
Remove the lower_br_fcmp function from the riscv64 backend. This PR only affects the emit implementation for FloatRound, replacing the uses of lower_br_fcmp with direct uses of FpuRRR and CondBr.
Any changes in behavior here should be already covered by the runtests for ceil, floor, trunc, and nearest.
Remove the MInst::TrapFf instruction in the riscv64 backend. It was only used in two places in the emit case for FloatRound, and was easily replaced with a combination of FpuRRR and TrapIf.
Rework the compilation of fcmp in the riscv64 backend to be in ISLE, removing the need for the dedicated Fcmp instruction. This change is motivated by #5500, which showed that the riscv64 backend was generating branch instructions in the middle of a basic block.
We can't remove lower_br_fcmp quite yet as it's used in a few places in the emit module, but it's now no longer reachable from the ISLE lowerings.
Fixes#5500
* cranelift: Add `iabs.i128` runtest
* riscv64: Fix incorrect extension in iabs
When lowering iabs, we were accidentally comparing the unextended value
this caused the instruction to misbehave with certain top bits.
This commit also adds a zbb lowering that does not use jumps.
When lowering `select+icmp` we have an optimization that allows us to
avoid materializing the icmp result.
We were accidentally not masking the high bits for i8 and i16 in this case.
Issue #5498 reported this as an illegal instruction but what was happening
there was that the invalid select caused a division by zero.
We had a off-by-one bounds check error when checking if we should
jump to the default block in a br-table. Instead of always jumping
to the default block when we have a jump table with 0 targets we
would try to compute an offset past the end of the table.
This sometimes would not crash, but it would crash if the there was
no block after the br_table, thus adding a cold block would cause a
segfault.
The actual fix is quite simple, do not count the default block
as a jump table entry when computing the limits.
This commit also does a bunch of cleanup and adding some comments
to the br_table emission code.
Assert that we never see real registers as arguments to move instructions in VCodeBuilder::collect_operands.
Also fix a bug in the riscv64 backend that was discovered by these assertions: the lowerings of get_stack_pointer and get_frame_pointer were using physical registers 8 and 2 directly. The solution was similar to other backends: add a move instruction specifically for moving out of physical registers, whose source operand is opaque to regalloc2.
Fixes#5199.
Fixes#5200.
Fixes#5452.
Fixes#5453.
On riscv64, there is apparently an autoconversion from `ValueRegs` to
`Reg` that takes just the low register [0], and removing this conversion
causes 48 errors. As a result of this, `select` with an `i128` condition
was silently miscompiling, testing only the low 64 bits. We should
remove this autoconversion to ensure we aren't missing any other silent
truncations, but for now this PR just adds the explicit `I128` logic for
`select` / `select_spectre_guard`.
[0]
d9fdbfd50e/cranelift/codegen/src/isa/riscv64/inst.isle (L1762)
* Refactor lower_branch to have Unit result
Branches cannot have any output, so it is more straightforward
to have the ISLE term return Unit instead of InstOutput.
Also provide a new `emit_side_effect` term to simplify
implementation of `lower_branch` rules with Unit result.
* Simplify LowerBackend interface
Move all remaining asserts from the LowerBackend::lower and
::lower_branch_group into the common call site.
Change return value of ::lower to Option<InstOutput>, and
return value of ::lower_branch_group to Option<()> to match
ISLE term signature.
Only pass the first branch into ::lower_branch_group and
rename it to ::lower_branch.
As a result of all those changes, LowerBackend routines
now consists solely to calls to the corresponding ISLE
routines.
Now that all operations are implemented in ISLE, simplify Rust
code by providing a generic error message if any operation is
not implemented in ISLE. Done across all targets.
* aarch64: constant generation cleanup
Add support for MOVZ and MOVN generation via ISLE.
Handle f32const, f64const, and nop instructions via ISLE.
No longer call Inst::gen_constant from lower.rs.
* riscv64: constant generation cleanup
Handle f32const, f64const, and nop instructions via ISLE.
* s390x: constant generation cleanup
Fix rule priorities for "imm" term.
Only handle 32-bit stack offsets; no longer use load_constant64.
* x64: constant generation cleanup
No longer call Inst::gen_constant from lower.rs or abi.rs.
* Refactor LowerBackend::lower to return InstOutput
No longer write to the per-insn output registers; instead, return
an InstOutput vector of temp registers holding the outputs.
This will allow calling LowerBackend::lower multiple times for
the same instruction, e.g. to rematerialize constants.
When emitting the primary copy of the instruction during lowering,
writing to the per-insn registers is now done in lower_clif_block.
As a result, the ISLE lower_common routine is no longer needed.
In addition, the InsnOutput type and all code related to it
can be removed as well.
* Refactor IsleContext to hold a LowerBackend reference
Remove the "triple", "flags", and "isa_flags" fields that are
copied from LowerBackend to each IsleContext, and instead just
hold a reference to LowerBackend in IsleContext.
This will allow calling LowerBackend::lower from within callbacks
in src/machinst/isle.rs, e.g. to rematerialize constants.
To avoid having to pass LowerBackend references through multiple
functions, eliminate the lower_insn_to_regs subroutines in those
targets that still have them, and just inline into the main
lower routine. This also eliminates lower_inst.rs on aarch64
and riscv64.
Replace all accesses to the removed IsleContext fields by going
through the LowerBackend reference.
* Remove MachInst::gen_constant
This addresses the problem described in issue
https://github.com/bytecodealliance/wasmtime/issues/4426
that targets currently have to duplicate code to emit
constants between the ISLE logic and the gen_constant
callback.
After the various cleanups in earlier patches in this series,
the only remaining user of get_constant is put_value_in_regs
in Lower. This can now be removed, and instead constant
rematerialization can be performed in the put_in_regs ISLE
callback by simply directly calling LowerBackend::lower
on the instruction defining the constant (using a different
output register).
Since the check for egraph mode is now no longer performed in
put_value_in_regs, the Lower::flags member becomes obsolete.
Care needs to be taken that other calls directly to the
Lower::put_value_in_regs routine now handle the fact that
no more rematerialization is performed. All such calls in
target code already historically handle constants themselves.
The remaining call site in the ISLE gen_call_common helper
can be redirected to the ISLE put_in_regs callback.
The existing target implementations of gen_constant are then
unused and can be removed. (In some target there may still
be further opportunities to remove duplication between ISLE
and some local Rust code - this can be left to future patches.)
This extractor had a side-effect of invoking `put_in_regs`, which is not
supposed to be invoked until the pattern-matching commits to evaluating
a rule right-hand side (i.e., cannot backtrack). In this case the
side-effect was mostly benign (in theory it could have caused additional
values to be computed needlessly), but in general we should be careful
to keep side-effects out of the left-hand side to enable further
optimizations and work on islec.
The implicit conversion from `Value` to `Reg` turns out to be enough to
make the rules in question work, so we can simply remove the use of the
extractor in this case.
When adding some optimization rules for `icmp` in the egraph
infrastructure, we ended up creating a path to legal CLIF but with
patterns unsupported by three of our four backends: specifically,
`select_spectre_guard` with a general truthy input, rather than an
`icmp`.
In #5206 we discussed replacing `select_spectre_guard` with something
more specific, and that could still be a long-term solution here, but
doing so now would interfere with ongoing refactoring of heap access
lowering, so I've opted not to do so. (In that issue I was concerned
about complexity and didn't see the need but with this fuzzbug I'm
starting to feel a bit differently; maybe we should remove this
non-orthogonal op in the long run.)
Fixes#5417.
All instructions using the CPU flags types (IFLAGS/FFLAGS) were already
removed. This patch completes the cleanup by removing all remaining
instructions that define values of CPU flags types, as well as the
types themselves.
Specifically, the following features are removed:
- The IFLAGS and FFLAGS types and the SpecialType category.
- Special handling of IFLAGS and FFLAGS in machinst/isle.rs and
machinst/lower.rs.
- The ifcmp, ifcmp_imm, ffcmp, iadd_ifcin, iadd_ifcout, iadd_ifcarry,
isub_ifbin, isub_ifbout, and isub_ifborrow instructions.
- The writes_cpu_flags instruction property.
- The flags verifier pass.
- Flags handling in the interpreter.
All of these features are currently unused; no functional change
intended by this patch.
This addresses https://github.com/bytecodealliance/wasmtime/issues/3249.
* cranelift-isle: Add "partial" flag for constructors
Instead of tying fallibility of constructors to whether they're either
internal or pure, this commit assumes all constructors are infallible
unless tagged otherwise with a "partial" flag.
Internal constructors without the "partial" flag are not allowed to use
constructors which have the "partial" flag on the right-hand side of any
rules, because they have no way to report last-minute match failures.
Multi-constructors should never be "partial"; they report match failures
with an empty iterator instead. In turn this means you can't use partial
constructors on the right-hand side of internal multi-constructor rules.
However, you can use the same constructors on the left-hand side with
`if` or `if-let` instead.
In many cases, ISLE can already trivially prove that an internal
constructor always returns `Some`. With this commit, those cases are
largely unchanged, except for removing all the `Option`s and `Some`s
from the generated code for those terms.
However, for internal non-partial constructors where ISLE could not
prove that, it now emits an `unreachable!` panic as the last-resort,
instead of returning `None` like it used to do. Among the existing
backends, here's how many constructors have these panic cases:
- x64: 14% (53/374)
- aarch64: 15% (41/277)
- riscv64: 23% (26/114)
- s390x: 47% (268/567)
It's often possible to rewrite rules so that ISLE can tell the panic can
never be hit. Just ensure that there's a lowest-priority rule which has
no constraints on the left-hand side.
But in many of these constructors, it's difficult to statically prove
the unhandled cases are unreachable because that's only down to
knowledge about how they're called or other preconditions.
So this commit does not try to enforce that all terms have a last-resort
fallback rule.
* Check term flags while translating expressions
Instead of doing it in a separate pass afterward.
This involved threading all the term flags (pure, multi, partial)
through the recursive `translate_expr` calls, so I extracted the flags
to a new struct so they can all be passed together.
* Validate multi-term usage
Now that I've threaded the flags through `translate_expr`, it's easy to
check this case too, so let's just do it.
* Extract `ReturnKind` to use in `ExternalSig`
There are only three legal states for the combination of `multi` and
`infallible`, so replace those fields of `ExternalSig` with a
three-state enum.
* Remove `Option` wrapper from multi-extractors too
If we'd had any external multi-constructors this would correct their
signatures as well.
* Update ISLE tests
* Tag prelude constructors as pure where appropriate
I believe the only reason these weren't marked `pure` before was because
that would have implied that they're also partial. Now that those two
states are specified separately we apply this flag more places.
* Fix my changes to aarch64 `lower_bmask` and `imm` terms
Enable regalloc2's SSA verifier in debug builds to check for any outstanding reuse of virtual registers in def constraints. As fuzzing enables debug_assertions, this will enable the SSA verifier when fuzzing as well.
* cranelift-codegen: Use ISLE matching, not same_value
The `same_value` function just wrapped an equality test into an external
constructor, but we can do that with ISLE's equality constraints
instead.
* riscv64: Remove custom condition-code tests
The `lower_icmp` term exists solely to decide whether to sign-extend or
zero-extend the comparison operands, based on whether the condition code
requires a signed comparison. It additionally tested whether the
condition code was == or !=, but produced the same result as for other
unsigned comparisons.
We already have `signed_cond_code` in the ISLE prelude, which classifies
the total-ordering condition codes according to whether they're signed.
It also lumps == and != in the "unsigned" camp, as desired.
So this commit uses the existing method from the prelude instead of
riscv64-local definitions.
Because this version has no constraints on the left-hand side of the
rule in the unsigned case, ISLE generates Rust that always returns
`Some`. That shows that the current use of `unwrap` is justified, at the
only Rust-side call-site of `constructor_lower_icmp`, which is in
cranelift/codegen/src/isa/riscv64/lower/isle.rs.
* ISLE prelude: make offset32 infallible
This extractor always returns `Some`, so it doesn't need to be fallible.
This PR fixes two bugs in the riscv64 backend, where branch instructions were emitted in the middle of a basic block:
Constant emission, where the constants are inlined into the vcode and are jumped over at runtime,
The BrTableCheck pseudo-instruction, which was always emitted before a BrTable instruction, and would handle jumping to the default label.
The first bug was resolved by introducing two new psuedo instructions, LoadConst32 and LoadConst64. Both of these instructions serve to delay the original encoding to emission time, after regalloc2 has run.
The second bug was fixed by removing the BrTableCheck instruction. As it was always emitted directly before BrTable, it was easier to remove it and merge the two into a single instruction.
As loading constants on aarch64 can take up to 4 instructions, we need to plumb through some additional registers. Rather than pass a fixed list of registers in, pass an allocation function.
* Turn off probestack by default in Cranelift
The probestack feature is not implemented for the aarch64 and s390x
backends and currently the on-by-default status requires the aarch64 and
s390x implementations to be a stub. Turning off probestack by default
allows the s390x and aarch64 backends to panic with an error message to
avoid providing a false sense of security. When the probestack option is
implemented for all backends, however, it may be reasonable to
re-enable.
* aarch64: Improve codegen for AMode fallback
Currently the final fallback for finalizing an `AMode` will generate
both a constant-loading instruction as well as an `add` instruction to
the base register into the same temporary. This commit improves the
codegen by removing the `add` instruction and folding the final add into
the finalized `AMode`. This changes the `extendop` used but both
registers are 64-bit so shouldn't be affected by the extending
operation.
* aarch64: Implement inline stack probes
This commit implements inline stack probes for the aarch64 backend in
Cranelift. The support here is modeled after the x64 support where
unrolled probes are used up to a particular threshold after which a loop
is generated. The instructions here are similar in spirit to x64 except
that unlike x64 the stack pointer isn't modified during the unrolled
loop to avoid needing to re-adjust it back up at the end of the loop.
* Enable inline probestack for AArch64 and Riscv64
This commit enables inline probestacks for the AArch64 and Riscv64
architectures in the same manner that x86_64 has it enabled now. Some
more testing was additionally added since on Unix platforms we should be
guaranteed that Rust's stack overflow message is now printed too.
* Enable probestack for aarch64 in cranelift-fuzzgen
* Address review comments
* Remove implicit stack overflow traps from x64 backend
This commit removes implicit `StackOverflow` traps inserted by the x64
backend for stack-based operations. This was historically required when
stack overflow was detected with page faults but Wasmtime no longer
requires that since it's not suitable for wasm modules which call host
functions. Additionally no other backend implements this form of
implicit trap-code additions so this is intended to synchronize the
behavior of all the backends.
This fixes a test added prior for aarch64 to properly abort the process
instead of accidentally being caught by Wasmtime.
* Fix a style issue