Commit Graph

196 Commits

Author SHA1 Message Date
Anton Kirilov
d8b290898c Initial forward-edge CFI implementation (#3693)
* Initial forward-edge CFI implementation

Give the user the option to start all basic blocks that are targets
of indirect branches with the BTI instruction introduced by the
Branch Target Identification extension to the Arm instruction set
architecture.

Copyright (c) 2022, Arm Limited.

* Refactor `from_artifacts` to avoid second `make_executable` (#1)

This involves "parsing" twice but this is parsing just the header of an
ELF file so it's not a very intensive operation and should be ok to do
twice.

* Address the code review feedback

Copyright (c) 2022, Arm Limited.

Co-authored-by: Alex Crichton <alex@alexcrichton.com>
2022-09-08 09:35:58 -05:00
Benjamin Bouvier
f0337c9c76 Upgrade to the high-level ittapi v0.3.0 crate (#4003)
* Upgrade to the high-level ittapi v0.3.0 crate

* Add exclusion for windows mingw
2022-07-18 10:13:09 -05:00
Alex Crichton
601e8f3094 Remove dependency on the region crate (#4407)
This commit removes Wasmtime's dependency on the `region` crate. The
motivation for this came about when I was updating dependencies and saw
that `region` had a new major version at 3.0.0 as opposed to our
currently used 2.3 track. In reviewing the use cases of `region` within
Wasmtime I found two trends in particular which motivated this commit:

* Some unix-specific areas of `wasmtime_runtime` use
  `rustix::mm::mprotect` instead of `region::protect` already. This
  means that the usage of `region::protect` for changing virtual memory
  protections was already inconsistent.

* Many uses of `region::protect` were already in unix-specific regions
  which could make use of `rustix`.

Overall I opted to remove the dependency on the `region` crate to avoid
chasing its versions over time. Unix-specific changes of protections
were easily changed to `rustix::mm::mprotect`. There were two locations
where a windows/unix split is now required and I subjectively ruled
"that seems ok". Finally removing `region` also meant that the "what is
the current page size" query needed to be inlined into
`wasmtime_runtime`, which I have also subjectively ruled "that seems
fine".

Finally one final refactoring here was that the `unix.rs` and `linux.rs`
split for the pooling allocator was merged. These two files already only
differed in one function so I slapped a `cfg_if!` in there to help
reduce the duplication.
2022-07-07 21:28:25 +00:00
Alex Crichton
df1502531d Migrate from winapi to windows-sys (#4346)
* Migrate from `winapi` to `windows-sys`

I believe that Microsoft itself is supporting the development of
`windows-sys` and it's also used by `cap-std` now so this switches
Wasmtime's dependencies on Windows APIs from the `winapi` crate to the
`windows-sys` crate. We still have `winapi` in our dependency graph but
that may get phased out over time.

* Make windows-sys a target-specific dependency
2022-06-28 18:02:41 +00:00
Alex Crichton
66b829b1bf Change how unwind information is stored on Windows (#4314)
* Change how unwind information is stored on Windows

Unwind information on Windows is stored in two separate locations. The
first location is the unwind information itself which corresponds to
`UNWIND_INFO`. The second location is a list of `RUNTIME_INFO`
structures which point to function bodes and `UNWIND_INFO` structures.

Currently in Wasmtime the `UNWIND_INFO` structures are stored just after
functions themselves with a somewhat cryptic comment indicating that
Windows prefers this (I'm unsure as to the provenance of this comment).
The `RUNTIME_INFO` data is then stored in a separate section which has
the custom name of `_wasmtime_winx64_unwind`.

After my recent foray into trying to debug windows-2022 bad unwind
information again I realized though that Windows actually has official
sections for these two unwind information items. The `.xdata` section is
used to store the `UNWIND_INFO` structures and the `.pdata` section
stores the `RUNTIME_INFO` list. To try to be somewhat idiomatic and
perhaps one day even hook into standard Windows debugging tools I went
ahead and refactored how our unwind information is stored to match this.

Perhaps the main benefit of this is that it reduces the size of the
read/execute section of the binary. Previously the unwind information
was executable since it was stored in the `.text` section, but
unnecessarily so. Now it's in a read-only section which is in theory a
small amount of hardening.

Otherwise though I don't think this will really help all that much to
hook up in to standard debugging tools like `objdump` because it's all
still stored in an ELF file rather than a COFF file.

* Review comments
2022-06-28 15:40:04 +00:00
Alex Crichton
7fdc616368 Remove the Paged memory initialization variant (#4046)
* Remove the `Paged` memory initialization variant

This commit simplifies the `MemoryInitialization` enum by removing the
`Paged` variant. The `Paged` variant was originally added for uffd, but
that support has now been removed in #4040. This is no longer necessary
but is still used as an intermediate step of becoming a `Static` variant
of initialized memory (which copy-on-write uses). As a result this
commit largely modifies the static initialization of memory steps and
folds the two methods together.

* Apply suggestions from code review

Co-authored-by: Peter Huene <peter@huene.dev>

Co-authored-by: Peter Huene <peter@huene.dev>
2022-05-05 09:44:48 -05:00
Alex Crichton
90791a0e32 Reduce contention on the global module rwlock (#4041)
* Reduce contention on the global module rwlock

This commit intendes to close #4025 by reducing contention on the global
rwlock Wasmtime has for module information during instantiation and
dropping a store. Currently registration of a module into this global
map happens during instantiation, but this can be a hot path as
embeddings may want to, in parallel, instantiate modules.

Instead this switches to a strategy of inserting into the global module
map when a `Module` is created and then removing it from the map when
the `Module` is dropped. Registration in a `Store` now preserves the
entire `Module` within the store as opposed to trying to only save it
piecemeal. In reality the only piece that wasn't saved within a store
was the `TypeTables` which was pretty inconsequential for core wasm
modules anyway.

This means that instantiation should now clone a singluar `Arc` into a
`Store` per `Module` (previously it cloned two) with zero managemnt on
the global rwlock as that happened at `Module` creation time.
Additionally dropping a `Store` again involves zero rwlock management
and only a single `Arc` drop per-instantiated module (previously it was
two).

In the process of doing this I also went ahead and removed the
`Module::new_with_name` API. This has been difficult to support
historically with various variations on the internals of `ModuleInner`
because it involves mutating a `Module` after it's been created. My hope
is that this API is pretty rarely used and/or isn't super important, so
it's ok to remove.

Finally this change removes some internal `Arc` layerings that are no
longer necessary, attempting to use either `T` or `&T` where possible
without dealing with the overhead of an `Arc`.

Closes #4025

* Move back to a `BTreeMap` in `ModuleRegistry`
2022-04-19 15:13:47 -05:00
Alex Crichton
453feb6f82 Remove some dead code (#3970)
This commit removes methods that are never used between crates or trait
impls like `Clone` which may have been used one day but are no longer used.
2022-03-30 13:51:34 -05:00
Alex Crichton
d1d10dc8da Refactor the TypeTables type (#3971)
* Remove duplicate `TypeTables` type

This was once needed historically but it is no longer needed.

* Make the internals of `TypeTables` private

Instead of reaching internally for the `wasm_signatures` map an `Index`
implementation now exists to indirect accesses through the type of the
index being accessed. For the component model this table of types will
grow a number of other tables and this'll assist in consuming sites not
having to worry so much about which map they're reaching into.
2022-03-30 13:51:25 -05:00
Alex Crichton
76b82910c9 Remove the module linking implementation in Wasmtime (#3958)
* Remove the module linking implementation in Wasmtime

This commit removes the experimental implementation of the module
linking WebAssembly proposal from Wasmtime. The module linking is no
longer intended for core WebAssembly but is instead incorporated into
the component model now at this point. This means that very large parts
of Wasmtime's implementation of module linking are no longer applicable
and would change greatly with an implementation of the component model.

The main purpose of this is to remove Wasmtime's reliance on the support
for module-linking in `wasmparser` and tooling crates. With this
reliance removed we can move over to the `component-model` branch of
`wasmparser` and use the updated support for the component model.
Additionally given the trajectory of the component model proposal the
embedding API of Wasmtime will not look like what it looks like today
for WebAssembly. For example the core wasm `Instance` will not change
and instead a `Component` is likely to be added instead.

Some more rationale for this is in #3941, but the basic idea is that I
feel that it's not going to be viable to develop support for the
component model on a non-`main` branch of Wasmtime. Additionaly I don't
think it's viable, for the same reasons as `wasm-tools`, to support the
old module linking proposal and the new component model at the same
time.

This commit takes a moment to not only delete the existing module
linking implementation but some abstractions are also simplified. For
example module serialization is a bit simpler that there's only one
module. Additionally instantiation is much simpler since the only
initializer we have to deal with are imports and nothing else.

Closes #3941

* Fix doc link

* Update comments
2022-03-23 14:57:34 -05:00
Alex Crichton
41594dc5d9 Expose details for mlocking modules externally (#3944)
This commit exposes some various details and config options for having
finer-grain control over mlock-ing the memory of modules. This amounts
to three different changes being present in this commit:

* A new `Module::image_range` API is added to expose the range in host
  memory of where the compiled image resides. This enables embedders to
  make mlock-ing decisions independently of Wasmtime. Otherwise though
  there's not too much useful that can be done with this range
  information at this time.

* A new `Config::force_memory_init_memfd` option has been added. This
  option is used to force the usage of `memfd_create` on Linux even when
  the original module comes from a file on disk. With mlock-ing the main
  purpose for Wasmtime is likely to be avoiding major page faults that
  go back to disk, so this is another major source of avoiding page
  faults by ensuring that the initialization contents of memory are
  always in RAM.

* The `memory_images` field of a `Module` has gone back to being lazily
  created on the first instantiation, effectively reverting #3914. This
  enables embedders to defer the creation of the image to as late as
  possible to allow modules to be created from precompiled images
  without actually loading all the contents of the data segments from
  disk immediately.

These changes are all somewhat low-level controls which aren't intended
to be generally used by embedders. If fine-grained control is desired
though it's hoped that these knobs provide what's necessary to be
achieved.
2022-03-18 13:51:55 -05:00
Alex Crichton
f21aa98ccb Fuzz-code-coverage motivated improvements (#3905)
* fuzz: Fuzz padding between compiled functions

This commit hooks up the custom
`wasmtime_linkopt_padding_between_functions` configuration option to the
cranelift compiler into the fuzz configuration, enabling us to ensure
that randomly inserting a moderate amount of padding between functions
shouldn't tamper with any results.

* fuzz: Fuzz the `Config::generate_address_map` option

This commit adds fuzz configuration where `generate_address_map` is
either enabled or disabled, unlike how it's always enabled for fuzzing
today.

* Remove unnecessary handling of relocations

This commit removes a number of bits and pieces all related to handling
relocations in JIT code generated by Wasmtime. None of this is necessary
nowadays that the "old backend" has been removed (quite some time ago)
and relocations are no longer expected to be in the JIT code at all.
Additionally with the minimum x86_64 features required to run wasm code
it should be expected that no libcalls are required either for
Wasmtime-based JIT code.
2022-03-09 10:58:27 -08:00
bjorn3
4ed353a7e1 Extract jit_int.rs and most of jitdump_linux.rs for use outside of wasmtime (#2744)
* Extract gdb jit_int into wasmtime-jit-debug

* Move a big chunk of the jitdump code to wasmtime-jit-debug

* Fix doc markdown in perf_jitdump.rs
2022-02-22 09:23:44 -08:00
Andrew Brown
c183e93b80 x64: enable VTune support by default (#3821)
* x64: enable VTune support by default

After significant work in the `ittapi-rs` crate, this dependency should
build without issue on Wasmtime's supported operating systems: Windows,
Linux, and macOS. The difference in the release binary is <20KB, so this
change makes `vtune` a default build feature. This change upgrades
`ittapi-rs` to v0.2.0 and updates the documentation.

* review: add configuration for defaults in more places

* review: remove OS conditional compilation, add architecture

* review: do not default vtune feature in wasmtime-jit
2022-02-22 08:32:09 -08:00
Alex Crichton
c0c368d151 Use mmap'd *.cwasm as a source for memory initialization images (#3787)
* Skip memfd creation with precompiled modules

This commit updates the memfd support internally to not actually use a
memfd if a compiled module originally came from disk via the
`wasmtime::Module::deserialize_file` API. In this situation we already
have a file descriptor open and there's no need to copy a module's heap
image to a new file descriptor.

To facilitate a new source of `mmap` the currently-memfd-specific-logic
of creating a heap image is generalized to a new form of
`MemoryInitialization` which is attempted for all modules at
module-compile-time. This means that the serialized artifact to disk
will have the memory image in its entirety waiting for us. Furthermore
the memory image is ensured to be padded and aligned carefully to the
target system's page size, notably meaning that the data section in the
final object file is page-aligned and the size of the data section is
also page aligned.

This means that when a precompiled module is mapped from disk we can
reuse the underlying `File` to mmap all initial memory images. This
means that the offset-within-the-memory-mapped-file can differ for
memfd-vs-not, but that's just another piece of state to track in the
memfd implementation.

In the limit this waters down the term "memfd" for this technique of
quickly initializing memory because we no longer use memfd
unconditionally (only when the backing file isn't available).
This does however open up an avenue in the future to porting this
support to other OSes because while `memfd_create` is Linux-specific
both macOS and Windows support mapping a file with copy-on-write. This
porting isn't done in this PR and is left for a future refactoring.

Closes #3758

* Enable "memfd" support on all unix systems

Cordon off the Linux-specific bits and enable the memfd support to
compile and run on platforms like macOS which have a Linux-like `mmap`.
This only works if a module is mapped from a precompiled module file on
disk, but that's better than not supporting it at all!

* Fix linux compile

* Use `Arc<File>` instead of `MmapVecFileBacking`

* Use a named struct instead of mysterious tuples

* Comment about unsafety in `Module::deserialize_file`

* Fix tests

* Fix uffd compile

* Always align data segments

No need to have conditional alignment since their sizes are all aligned
anyway

* Update comment in build.rs

* Use rustix, not `region`

* Fix some confusing logic/names around memory indexes

These functions all work with memory indexes, not specifically defined
memory indexes.
2022-02-10 15:40:40 -06:00
Alex Crichton
520a7f26d7 Move function names out of Module (#3789)
* Move function names out of `Module`

This commit moves function names in a module out of the
`wasmtime_environ::Module` type and into separate sections stored in the
final compiled artifact. Spurred on by #3787 to look at module load
times I noticed that a huge amount of time was spent in deserializing
this map. The `spidermonkey.wasm` file, for example, has a 3MB name
section which is a lot of unnecessary data to deserialize at module load
time.

The names of functions are now split out into their own dedicated
section of the compiled artifact and metadata about them is stored in a
more compact format at runtime by avoiding a `BTreeMap` and instead
using a sorted array. Overall this improves deserialize times by up to
80% for modules with large name sections since the name section is no
longer deserialized at load time and it's lazily paged in as names are
actually referenced.

* Fix a typo

* Fix compiled module determinism

Need to not only sort afterwards but also first to ensure the data of
the name section is consistent.
2022-02-10 14:34:48 -06:00
Chris Fallin
99ed8cc9be Merge pull request #3697 from cfallin/memfd-cow
memfd/madvise-based CoW pooling allocator
2022-02-02 13:04:26 -08:00
Chris Fallin
b73ac83c37 Add a pooling allocator mode based on copy-on-write mappings of memfds.
As first suggested by Jan on the Zulip here [1], a cheap and effective
way to obtain copy-on-write semantics of a "backing image" for a Wasm
memory is to mmap a file with `MAP_PRIVATE`. The `memfd` mechanism
provided by the Linux kernel allows us to create anonymous,
in-memory-only files that we can use for this mapping, so we can
construct the image contents on-the-fly then effectively create a CoW
overlay. Furthermore, and importantly, `madvise(MADV_DONTNEED, ...)`
will discard the CoW overlay, returning the mapping to its original
state.

By itself this is almost enough for a very fast
instantiation-termination loop of the same image over and over,
without changing the address space mapping at all (which is
expensive). The only missing bit is how to implement
heap *growth*. But here memfds can help us again: if we create another
anonymous file and map it where the extended parts of the heap would
go, we can take advantage of the fact that a `mmap()` mapping can
be *larger than the file itself*, with accesses beyond the end
generating a `SIGBUS`, and the fact that we can cheaply resize the
file with `ftruncate`, even after a mapping exists. So we can map the
"heap extension" file once with the maximum memory-slot size and grow
the memfd itself as `memory.grow` operations occur.

The above CoW technique and heap-growth technique together allow us a
fastpath of `madvise()` and `ftruncate()` only when we re-instantiate
the same module over and over, as long as we can reuse the same
slot. This fastpath avoids all whole-process address-space locks in
the Linux kernel, which should mean it is highly scalable. It also
avoids the cost of copying data on read, as the `uffd` heap backend
does when servicing pagefaults; the kernel's own optimized CoW
logic (same as used by all file mmaps) is used instead.

[1] https://bytecodealliance.zulipchat.com/#narrow/stream/206238-general/topic/Copy.20on.20write.20based.20instance.20reuse/near/266657772
2022-01-31 12:53:18 -08:00
Dan Gohman
881c19473d Use ptr::cast instead of as casts in several places. (#3507)
`ptr::cast` has the advantage of being unable to silently cast
`*const T` to `*mut T`. This turned up several places that were
performing such casts, which this PR also fixes.
2022-01-21 13:03:17 -08:00
Benjamin Bouvier
2649d2352c Support vtune profiling of trampolines too (#3687)
* Provide helpers for demangling function names

* Profile trampolines in vtune too

* get rid of mapping

* avoid code duplication with jitdump_linux

* maintain previous default display name for wasm functions

* no dash, grrr

* Remove unused profiling error type
2022-01-19 09:49:23 -06:00
Benjamin Bouvier
e53f213ac4 Try demangling names before forwarding them to the profiler
Before this PR, each profiler (perf/vtune, at the moment) had to have a
demangler for each of the programming languages that could have been
compiled to wasm and fed into wasmtime. With this, wasmtime now
demangles names before even forwarding them to the underlying profiler,
which makes for a unified representation in profilers, and avoids
incorrect demangling in profilers.
2022-01-12 19:17:42 +01:00
Andrew Brown
99b00cd973 docs: update VTune documentation (#3604)
While using VTune, it seemed a good idea to check that the VTune
documentation for Wasmtime was still correct. It is and VTune support
still works (improvements: click-through to x86 assembly is not
available). These changes simply re-organize the documentation and add a
section for running VTune from a GUI.
2021-12-17 15:47:09 -08:00
Alex Crichton
f1225dfd93 Add a compilation section to disable address maps (#3598)
* Add a compilation section to disable address maps

This commit adds a new `Config::generate_address_map` compilation
setting which is used to disable emission of the `.wasmtime.addrmap`
section of compiled artifacts. This section is currently around the size
of the entire `.text` section itself unfortunately and for size reasons
may wish to be omitted. Functionality-wise all that is lost is knowing
the precise wasm module offset address of a faulting instruction or in a
backtrace of instructions. This also means that if the module has DWARF
debugging information available with it Wasmtime isn't able to produce a
filename and line number in the backtrace.

This option remains enabled by default. This option may not be needed in
the future with #3547 perhaps, but in the meantime it seems reasonable
enough to support a configuration mode where the section is entirely
omitted if the smallest module possible is desired.

* Fix some CI issues

* Update tests/all/traps.rs

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>

* Do less work in compilation for address maps

But only when disabled

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
2021-12-13 13:48:05 -06:00
Alex Crichton
0e90d4b903 Update addr2line and gimli deps (#3580)
Just a routine update, figured it was good to stay close to their most
recent versions
2021-12-01 15:48:36 -06:00
Dan Gohman
ea0cb971fb Update to rustix 0.26.2. (#3521)
This pulls in a fix for Android, where Android's seccomp policy on older
versions is to make `openat2` irrecoverably crash the process, so we have
to do a version check up front rather than relying on `ENOSYS` to
determine if `openat2` is supported.

And it pulls in the fix for the link errors when multiple versions of
rsix/rustix are linked in.

And it has updates for two crate renamings: rsix has been renamed to
rustix, and unsafe-io has been renamed to io-extras.
2021-11-15 10:21:13 -08:00
Anton Kirilov
e9c4164b94 Call membarrier() after making JIT mappings executable on AArch64 Linux
The membarrier() system call ensures that no processor has fetched
a stale instruction stream.

Copyright (c) 2021, Arm Limited.
2021-10-25 13:25:35 +01:00
Alex Crichton
e2a724ce18 Update the object crate to 0.27.0 (#3465)
Mostly just keeping us up to date with changes there since we somewhat
heavily rely on it now.
2021-10-20 10:52:06 -05:00
Anton Kirilov
a986cf2438 Increase the default code section alignment to 64 KB for AArch64 targets (#3424)
Some platforms such as AArch64 Linux support different memory page
sizes, so we need to be conservative when choosing the code section
alignment (which is equal to the page size) by using the maximum.

Copyright (c) 2021, Arm Limited.
2021-10-07 12:49:40 -05:00
Alex Crichton
38463d11ed Load generated trampolines into jitdump when profiling (#3344)
* Load generated trampolines into jitdump when profiling

This commit updates the jitdump profiler to generate JIT profiling
records for generated trampolines in a wasm module in addition to the
functions already in a module. It's also updated to learn about
trampolines generated via `Func::new` and friends. These trampolines
were all not previously registered meaning that stack traces with these
pc values would be confusing to see in the profile output. While the
names aren't the best it should at least be more clear than before if a
function is hot!

* Fix more builds
2021-09-21 13:05:31 -05:00
Dan Gohman
47490b4383 Use rsix to make system calls in Wasmtime. (#3355)
* Use rsix to make system calls in Wasmtime.

`rsix` is a system call wrapper crate that we use in `wasi-common`,
which can provide the following advantages in the rest of Wasmtime:

 - It eliminates some `unsafe` blocks in Wasmtime's code. There's
   still an `unsafe` block in the library, but this way, the `unsafe`
   is factored out and clearly scoped.

 - And, it makes error handling more consistent, factoring out code for
   checking return values and `io::Error::last_os_error()`, and code that
   does `errno::set_errno(0)`.

This doesn't cover *all* system calls; `rsix` doesn't implement
signal-handling APIs, and this doesn't cover calls made through `std` or
crates like `userfaultfd`, `rand`, and `region`.
2021-09-17 15:28:56 -07:00
Nick Fitzgerald
4b256ab968 Place unwind info directly after the text section, even when debug info is enabled
When debug info was enabled, we would put the debug info sections in between the
text section and the unwind info section. But the unwind info is encoded in a
position-independent manner (so that we don't need relocs for it) that relies on
it directly following the text section. The result of the misplacement was some
crashes inside the unwinder.
2021-09-09 13:39:30 -07:00
Nick Fitzgerald
0499cca2fa Name unwind info .eh_frame in the Wasmtime's compiled ELF artifact
We were previously using `_wasmtime_eh_frame` but there is no good reason to
add the prefix Wasmtime-specific prefix. Using the standard name allows for
better inspection with standard tools like `dwarfdump`.
2021-09-09 12:54:49 -07:00
Alex Crichton
1532516a36 Use relative call instructions between wasm functions (#3275)
* Use relative `call` instructions between wasm functions

This commit is a relatively major change to the way that Wasmtime
generates code for Wasm modules and how functions call each other.
Prior to this commit all function calls between functions, even if they
were defined in the same module, were done indirectly through a
register. To implement this the backend would emit an absolute 8-byte
relocation near all function calls, load that address into a register,
and then call it. While this technique is simple to implement and easy
to get right, it has two primary downsides associated with it:

* Function calls are always indirect which means they are more difficult
  to predict, resulting in worse performance.

* Generating a relocation-per-function call requires expensive
  relocation resolution at module-load time, which can be a large
  contributing factor to how long it takes to load a precompiled module.

To fix these issues, while also somewhat compromising on the previously
simple implementation technique, this commit switches wasm calls within
a module to using the `colocated` flag enabled in Cranelift-speak, which
basically means that a relative call instruction is used with a
relocation that's resolved relative to the pc of the call instruction
itself.

When switching the `colocated` flag to `true` this commit is also then
able to move much of the relocation resolution from `wasmtime_jit::link`
into `wasmtime_cranelift::obj` during object-construction time. This
frontloads all relocation work which means that there's actually no
relocations related to function calls in the final image, solving both
of our points above.

The main gotcha in implementing this technique is that there are
hardware limitations to relative function calls which mean we can't
simply blindly use them. AArch64, for example, can only go +/- 64 MB
from the `bl` instruction to the target, which means that if the
function we're calling is a greater distance away then we would fail to
resolve that relocation. On x86_64 the limits are +/- 2GB which are much
larger, but theoretically still feasible to hit. Consequently the main
increase in implementation complexity is fixing this issue.

This issue is actually already present in Cranelift itself, and is
internally one of the invariants handled by the `MachBuffer` type. When
generating a function relative jumps between basic blocks have similar
restrictions. This commit adds new methods for the `MachBackend` trait
and updates the implementation of `MachBuffer` to account for all these
new branches. Specifically the changes to `MachBuffer` are:

* For AAarch64 the `LabelUse::Branch26` value now supports veneers, and
  AArch64 calls use this to resolve relocations.

* The `emit_island` function has been rewritten internally to handle
  some cases which previously didn't come up before, such as:

  * When emitting an island the deadline is now recalculated, where
    previously it was always set to infinitely in the future. This was ok
    prior since only a `Branch19` supported veneers and once it was
    promoted no veneers were supported, so without multiple layers of
    promotion the lack of a new deadline was ok.

  * When emitting an island all pending fixups had veneers forced if
    their branch target wasn't known yet. This was generally ok for
    19-bit fixups since the only kind getting a veneer was a 19-bit
    fixup, but with mixed kinds it's a bit odd to force veneers for a
    26-bit fixup just because a nearby 19-bit fixup needed a veneer.
    Instead fixups are now re-enqueued unless they're known to be
    out-of-bounds. This may run the risk of generating more islands for
    19-bit branches but it should also reduce the number of islands for
    between-function calls.

  * Otherwise the internal logic was tweaked to ideally be a bit more
    simple, but that's a pretty subjective criteria in compilers...

I've added some simple testing of this for now. A synthetic compiler
option was create to simply add padded 0s between functions and test
cases implement various forms of calls that at least need veneers. A
test is also included for x86_64, but it is unfortunately pretty slow
because it requires generating 2GB of output. I'm hoping for now it's
not too bad, but we can disable the test if it's prohibitive and
otherwise just comment the necessary portions to be sure to run the
ignored test if these parts of the code have changed.

The final end-result of this commit is that for a large module I'm
working with the number of relocations dropped to zero, meaning that
nothing actually needs to be done to the text section when it's loaded
into memory (yay!). I haven't run final benchmarks yet but this is the
last remaining source of significant slowdown when loading modules,
after I land a number of other PRs both active and ones that I only have
locally for now.

* Fix arm32

* Review comments
2021-09-01 13:27:38 -05:00
Alex Crichton
9e0c910023 Add a Module::deserialize_file method (#3266)
* Add a `Module::deserialize_file` method

This commit adds a new method to the `wasmtime::Module` type,
`deserialize_file`. This is intended to be the same as the `deserialize`
method except for the serialized module is present as an on-disk file.
This enables Wasmtime to internally use `mmap` to avoid copying bytes
around and generally makes loading a module much faster.

A C API is added in this commit as well for various bindings to use this
accelerated path now as well. Another option perhaps for a Rust-based
API is to have an API taking a `File` itself to allow for a custom file
descriptor in one way or another, but for now that's left for a possible
future refactoring if we find a use case.

* Fix compat with main - handle readdonly mmap

* wip

* Try to fix Windows support
2021-08-31 13:05:51 -05:00
Alex Crichton
ef3ec594ce Don't copy executable code into a CodeMemory (#3265)
* Don't copy executable code into a `CodeMemory`

This commit moves a copy from compiled artifacts into a `CodeMemory`. In
general this commit drastically changes the meaning of a `CodeMemory`.
Previously it was an iteratively-pushed-on structure that would
accumulate executable code over time. Afterwards, however, it's a
manager for an `MmapVec` which updates the permissions on text section
to ensure that the pages are executable.

By taking ownership of an `MmapVec` within a `CodeMemory` there's no
need to copy any data around, which means that the `.text` section in
the ELF image produced by Wasmtime is usable as-is after placement in
memory and relocations have been resolved. This moves Wasmtime one step
closer to being able to directly use a module after it's `mmap`'d into
memory, optimizing when a module is loaded.

* Fix windows section alignment

* Review comments
2021-08-30 13:38:35 -05:00
Alex Crichton
eb251deca9 Remove scroll dependency from wasmtime-jit (#3260)
Similar functionality to `scroll` is provided with the `object` crate
and doesn't have a `*_derive` crate to go with it. This commit updates
the jitdump linux support to use `object` instead of `scroll` to achieve
the needs of writing structs-as-bytes onto disk.
2021-08-30 13:26:07 -05:00
Alex Crichton
a237e73b5a Remove some allocations in CodeMemory (#3253)
* Remove some allocations in `CodeMemory`

This commit removes the `FinishedFunctions` type as well as allocations
associated with trampolines when allocating inside of a `CodeMemory`.
The main goal of this commit is to improve the time spent in
`CodeMemory` where currently today a good portion of time is spent
simply parsing symbol names and trying to extract function indices from
them. Instead this commit implements a new strategy (different from #3236)
where compilation records offset/length information for all
functions/trampolines so this doesn't need to be re-learned from the
object file later.

A consequence of this commit is that this offset information will be
decoded/encoded through `bincode` unconditionally, but we can also
optimize that later if necessary as well.

Internally this involved quite a bit of refactoring since the previous
map for `FinishedFunctions` was relatively heavily relied upon.

* comments
2021-08-30 10:35:17 -05:00
Alex Crichton
c73be1f13a Use an mmap-friendly serialization format (#3257)
* Use an mmap-friendly serialization format

This commit reimplements the main serialization format for Wasmtime's
precompiled artifacts. Previously they were generally a binary blob of
`bincode`-encoded metadata prefixed with some versioning information.
The downside of this format, though, is that loading a precompiled
artifact required pushing all information through `bincode`. This is
inefficient when some data, such as trap/address tables, are rarely
accessed.

The new format added in this commit is one which is designed to be
`mmap`-friendly. This means that the relevant parts of the precompiled
artifact are already page-aligned for updating permissions of pieces
here and there. Additionally the artifact is optimized so that if data
is rarely read then we can delay reading it until necessary.

The new artifact format for serialized modules is an ELF file. This is
not a public API guarantee, so it cannot be relied upon. In the meantime
though this is quite useful for exploring precompiled modules with
standard tooling like `objdump`. The ELF file is already constructed as
part of module compilation, and this is the main contents of the
serialized artifact.

THere is some extra information, though, not encoded in each module's
individual ELF file such as type information. This information continues
to be `bincode`-encoded, but it's intended to be much smaller and much
faster to deserialize. This extra information is appended to the end of
the ELF file. This means that the original ELF file is still a valid ELF
file, we just get to have extra bits at the end. More information on the
new format can be found in the module docs of the serialization module
of Wasmtime.

Another refatoring implemented as part of this commit is to deserialize
and store object files directly in `mmap`-backed storage. This avoids
the need to copy bytes after the artifact is loaded into memory for each
compiled module, and in a future commit it opens up the door to avoiding
copying the text section into a `CodeMemory`. For now, though, the main
change is that copies are not necessary when loading from a precompiled
compilation artifact once the artifact is itself in mmap-based memory.

To assist with managing `mmap`-based memory a new `MmapVec` type was
added to `wasmtime_jit` which acts as a form of `Vec<T>` backed by a
`wasmtime_runtime::Mmap`. This type notably supports `drain(..N)` to
slice the buffer into disjoint regions that are all separately owned,
such as having a separately owned window into one artifact for all
object files contained within.

Finally this commit implements a small refactoring in `wasmtime-cache`
to use the standard artifact format for cache entries rather than a
bincode-encoded version. This required some more hooks for
serializing/deserializing but otherwise the crate still performs as
before.

* Review comments
2021-08-30 09:19:20 -05:00
Alex Crichton
12515e6646 Move trap information to a section of the compiled image (#3241)
This commit moves the `traps` field of `FunctionInfo` into a section of
the compiled artifact produced by Cranelift. This section is quite large
and when previously encoded/decoded with `bincode` this can take quite
some time to process. Traps are expected to be relatively rare and it's
not necessarily the right tradeoff to spend so much time
serializing/deserializing this data, so this commit offloads the section
into a custom-encoded binary format located elsewhere in the compiled image.

This is similar to #3240 in its goal which is to move very large pieces
of metadata to their own sections to avoid decoding anything when we
load a precompiled modules. This also has a small benefit that it's
slightly more efficient storage for the trap information too, but that's
a negligible benefit.

This is part of #3230 to make loading modules fast.
2021-08-27 01:09:55 -05:00
Alex Crichton
fc91176685 Move address maps to a section of the compiled image (#3240)
This commit moves the `address_map` field of `FunctionInfo` into a
custom-encoded section of the executable. The goal of this commit is, as
previous commits, to push less data through `bincode`. The `address_map`
field is actually extremely large and has huge benefits of not being
decoded when we load a module. This data is only used for traps and such
as well, so it's not overly important that it's massaged in to precise
data the runtime can extremely speedily use.

The `FunctionInfo` type does retain a tiny bit of information about the
function itself (it's start source location), but other than that the
`FunctionAddressMap` structure is moved from `wasmtime-environ` to
`wasmtime-cranelift` since it's now no longer needed outside of that
context.
2021-08-26 23:06:41 -05:00
Alex Crichton
d12f1d77e6 Convert compilation artifacts to just bytes (#3239)
* Convert compilation artifacts to just bytes

This commit strips the `CompilationArtifacts` type down to simply a list
of bytes. This moves all extra metadata elsewhere to live within the
list of bytes itself as `bincode`-encoded information.

Small affordance is made to avoid an in-process
serialize-then-deserialize round-trip for use cases like `Module::new`,
but otherwise this is mostly just moving some data around.

* Rename data section to `.rodata.wasm`
2021-08-26 21:17:02 -05:00
Alex Crichton
d74cc33856 Merge wasmtime-jit and wasmtime-profiling (#3247)
* Merge `wasmtime-jit` and `wasmtime-profiling`

This commit merges the `wasmtime-profiling` crate into the
`wasmtime-jit` crate. It wasn't really buying a ton being a separate
crate and an upcoming refactoring I'd like to do is to remove the
`FinishedFunctions` structure. To enable the profilers to work as they
used to this commit changes them to pass `CompiledModule` as the
argument, but this only works if the profiling trait can see the
`CompiledModule` type.

* Fix a length calculation
2021-08-26 16:22:11 -05:00
Alex Crichton
def394eca2 Rewrite gdbjit support with safety and fewer deps (#3246)
This refactoring primarily removes the dependency of the gdbjit image
creation on the `finished_functions` array, which shouldn't be necessary
given the input object being passed in since information can be read
from the object instead. Additionally, though, this commit also removes
all `unsafe` from the file, relying on various tools in the `object`
crate to parse the internals and update various fields.
2021-08-26 10:44:05 -05:00
Alex Crichton
7d05ebe7ff Move wasm data/debuginfo into the ELF compilation image (#3235)
* Move wasm data/debuginfo into the ELF compilation image

This commit moves existing allocations of `Box<[u8]>` stored separately
from compilation's final ELF image into the ELF image itself. The goal
of this commit is to reduce the amount of data which `bincode` will need
to process in the future. DWARF debugging information and wasm data
segments can be quite large, and they're relatively rarely read, so
there's typically no need to copy them around. Instead by moving them
into the ELF image this opens up the opportunity in the future to
eliminate copies and use data directly as-found in the image itself.

For information accessed possibly-multiple times, such as the wasm data
ranges, the indexes of the data within the ELF image are computed when
a `CompiledModule` is created. These indexes are then used to directly
index into the image without having to root around in the ELF file each
time they're accessed.

One other change located here is that the symbolication context
previously cloned the debug information into it to adhere to the
`'static` lifetime safely, but this isn't actually ever used in
`wasmtime` right now so the unsafety around this has been removed and
instead borrowed data is returned (no more clones, yay!).

* Fix lightbeam
2021-08-25 09:03:07 -05:00
Alex Crichton
a662f5361d Move wasm data sections out of wasmtime_environ::Module (#3231)
* Reduce indentation in `to_paged`

Use a few early-returns from `match` to avoid lots of extra indentation.

* Move wasm data sections out of `wasmtime_environ::Module`

This is the first step down the road of #3230. The long-term goal is
that `Module` is always `bincode`-decoded, but wasm data segments are a
possibly very-large portion of this residing in modules which we don't
want to shove through bincode. This refactors the internals of wasmtime
to be ok with this data living separately from the `Module` itself,
providing access at necessary locations.

Wasm data segments are now extracted from a wasm module and
concatenated directly. Data sections then describe ranges within this
concatenated list of data, and passive data works the same way. This
implementation does not lend itself to eventually optimizing the case
where passive data is dropped and no longer needed. That's left for a
future PR.
2021-08-24 14:04:03 -05:00
Alex Crichton
b05cd2e023 Bounds-check all relocations we apply in linking (#3237)
This commit removes the unsafety present in the `link_module` function
by bounds-checking all relocations that we apply, using utilities from
the `object` crate for convenience. This isn't intended to have any
actual functional change, just ideally improving the safety a bit here
in the case of future bugs.
2021-08-24 13:44:28 -05:00
Alex Crichton
22ab535ad9 Parse fewer names in linking (#3226)
We don't need an auxiliary map to tell us function addresses, we can
query the symbol instead.
2021-08-23 14:35:48 -05:00
Alex Crichton
925b771d2d Remove some dead code from wasmtime-jit (#3225)
Looks like nothing is actually using these methods, so let's remove
them.
2021-08-23 14:35:39 -05:00
Alex Crichton
ddfadaeb38 Add a cranelift compile-time feature to wasmtime (#3206)
* Remove unnecessary into_iter/map

Forgotten from a previous refactoring, this variable was already of the
right type!

* Move `wasmtime_jit::Compiler` into `wasmtime`

This `Compiler` struct is mostly a historical artifact at this point and
wasn't necessarily pulling much weight any more. This organization also
doesn't lend itself super well to compiling out `cranelift` when the
`Compiler` here is used for both parallel iteration configuration
settings as well as compilation.

The movement into `wasmtime` is relatively small, with
`Module::build_artifacts` being the main function added here which is a
merging of the previous functions removed from the `wasmtime-jit` crate.

* Add a `cranelift` compile-time feature to `wasmtime`

This commit concludes the saga of refactoring Wasmtime and making
Cranelift an optional dependency by adding a new Cargo feature to the
`wasmtime` crate called `cranelift`, which is enabled by default.

This feature is implemented by having a new cfg for `wasmtime` itself,
`cfg(compiler)`, which is used wherever compilation is necessary. This
bubbles up to disable APIs such as `Module::new`, `Func::new`,
`Engine::precompile_module`, and a number of `Config` methods affecting
compiler configuration. Checks are added to CI that when built in this
mode Wasmtime continues to successfully build. It's hoped that although
this is effectively "sprinkle `#[cfg]` until things compile" this won't
be too too bad to maintain over time since it's also an use case we're
interested in supporting.

With `cranelift` disabled the only way to create a `Module` is with the
`Module::deserialize` method, which requires some form of precompiled
artifact.

Two consequences of this change are:

* `Module::serialize` is also disabled in this mode. The reason for this
  is that serialized modules contain ISA/shared flags encoded in them
  which were used to produce the compiled code. There's no storage for
  this if compilation is disabled. This could probably be re-enabled in
  the future if necessary, but it may not end up being all that necessary.

* Deserialized modules are not checked to ensure that their ISA/shared
  flags are compatible with the host CPU. This is actually already the
  case, though, with normal modules. We'll likely want to fix this in
  the future using a shared implementation for both these locations.

Documentation should be updated to indicate that `cranelift` can be
disabled, although it's not really the most prominent documentation
because this is expected to be a somewhat niche use case (albeit
important, just not too common).

* Always enable cranelift for the C API

* Fix doc example builds

* Fix check tests on GitHub Actions
2021-08-18 16:47:47 -05:00
Alex Crichton
87c33c2969 Remove wasmtime-environ's dependency on cranelift-codegen (#3199)
* Move `CompiledFunction` into wasmtime-cranelift

This commit moves the `wasmtime_environ::CompiledFunction` type into the
`wasmtime-cranelift` crate. This type has lots of Cranelift-specific
pieces of compilation and doesn't need to be generated by all Wasmtime
compilers. This replaces the usage in the `Compiler` trait with a
`Box<Any>` type that each compiler can select. Each compiler must still
produce a `FunctionInfo`, however, which is shared information we'll
deserialize for each module.

The `wasmtime-debug` crate is also folded into the `wasmtime-cranelift`
crate as a result of this commit. One possibility was to move the
`CompiledFunction` commit into its own crate and have `wasmtime-debug`
depend on that, but since `wasmtime-debug` is Cranelift-specific at this
time it didn't seem like it was too too necessary to keep it separate.
If `wasmtime-debug` supports other backends in the future we can
recreate a new crate, perhaps with it refactored to not depend on
Cranelift.

* Move wasmtime_environ::reference_type

This now belongs in wasmtime-cranelift and nowhere else

* Remove `Type` reexport in wasmtime-environ

One less dependency on `cranelift-codegen`!

* Remove `types` reexport from `wasmtime-environ`

Less cranelift!

* Remove `SourceLoc` from wasmtime-environ

Change the `srcloc`, `start_srcloc`, and `end_srcloc` fields to a custom
`FilePos` type instead of `ir::SourceLoc`. These are only used in a few
places so there's not much to lose from an extra abstraction for these
leaf use cases outside of cranelift.

* Remove wasmtime-environ's dep on cranelift's `StackMap`

This commit "clones" the `StackMap` data structure in to
`wasmtime-environ` to have an independent representation that that
chosen by Cranelift. This allows Wasmtime to decouple this runtime
dependency of stack map information and let the two evolve
independently, if necessary.

An alternative would be to refactor cranelift's implementation into a
separate crate and have wasmtime depend on that but it seemed a bit like
overkill to do so and easier to clone just a few lines for this.

* Define code offsets in wasmtime-environ with `u32`

Don't use Cranelift's `binemit::CodeOffset` alias to define this field
type since the `wasmtime-environ` crate will be losing the
`cranelift-codegen` dependency soon.

* Commit to using `cranelift-entity` in Wasmtime

This commit removes the reexport of `cranelift-entity` from the
`wasmtime-environ` crate and instead directly depends on the
`cranelift-entity` crate in all referencing crates. The original reason
for the reexport was to make cranelift version bumps easier since it's
less versions to change, but nowadays we have a script to do that.
Otherwise this encourages crates to use whatever they want from
`cranelift-entity` since  we'll always depend on the whole crate.

It's expected that the `cranelift-entity` crate will continue to be a
lean crate in dependencies and suitable for use at both runtime and
compile time. Consequently there's no need to avoid its usage in
Wasmtime at runtime, since "remove Cranelift at compile time" is
primarily about the `cranelift-codegen` crate.

* Remove most uses of `cranelift-codegen` in `wasmtime-environ`

There's only one final use remaining, which is the reexport of
`TrapCode`, which will get handled later.

* Limit the glob-reexport of `cranelift_wasm`

This commit removes the glob reexport of `cranelift-wasm` from the
`wasmtime-environ` crate. This is intended to explicitly define what
we're reexporting and is a transitionary step to curtail the amount of
dependencies taken on `cranelift-wasm` throughout the codebase. For
example some functions used by debuginfo mapping are better imported
directly from the crate since they're Cranelift-specific. Note that
this is intended to be a temporary state affairs, soon this reexport
will be gone entirely.

Additionally this commit reduces imports from `cranelift_wasm` and also
primarily imports from `crate::wasm` within `wasmtime-environ` to get a
better sense of what's imported from where and what will need to be
shared.

* Extract types from cranelift-wasm to cranelift-wasm-types

This commit creates a new crate called `cranelift-wasm-types` and
extracts type definitions from the `cranelift-wasm` crate into this new
crate. The purpose of this crate is to be a shared definition of wasm
types that can be shared both by compilers (like Cranelift) as well as
wasm runtimes (e.g. Wasmtime). This new `cranelift-wasm-types` crate
doesn't depend on `cranelift-codegen` and is the final step in severing
the unconditional dependency from Wasmtime to `cranelift-codegen`.

The final refactoring in this commit is to then reexport this crate from
`wasmtime-environ`, delete the `cranelift-codegen` dependency, and then
update all `use` paths to point to these new types.

The main change of substance here is that the `TrapCode` enum is
mirrored from Cranelift into this `cranelift-wasm-types` crate. While
this unfortunately results in three definitions (one more which is
non-exhaustive in Wasmtime itself) it's hopefully not too onerous and
ideally something we can patch up in the future.

* Get lightbeam compiling

* Remove unnecessary dependency

* Fix compile with uffd

* Update publish script

* Fix more uffd tests

* Rename cranelift-wasm-types to wasmtime-types

This reflects the purpose a bit more where it's types specifically
intended for Wasmtime and its support.

* Fix publish script
2021-08-18 13:14:52 -05:00