Commit Graph

135 Commits

Author SHA1 Message Date
Nick Fitzgerald
05bf9ea3f3 Rename "Stackmap" to "StackMap"
And "stackmap" to "stack_map".

This commit is purely mechanical.
2020-08-07 10:08:44 -07:00
Alex Crichton
3d2e0e55f2 Remove the local field of Module (#2091)
This was added long ago at this point to assist with caching, but
caching has moved to a different level such that this wonky second level
of a `Module` isn't necessary. This commit removes the `ModuleLocal`
type to simplify accessors and generally make it easier to work with.
2020-08-04 12:29:16 -05:00
Alex Crichton
65eaca35dd Refactor where results of compilation are stored (#2086)
* Refactor where results of compilation are stored

This commit refactors the internals of compilation in Wasmtime to change
where results of individual function compilation are stored. Previously
compilation resulted in many maps being returned, and compilation
results generally held all these maps together. This commit instead
switches this to have all metadata stored in a `CompiledFunction`
instead of having a separate map for each item that can be stored.

The motivation for this is primarily to help out with future
module-linking-related PRs. What exactly "module level" is depends on
how we interpret modules and how many modules are in play, so it's a bit
easier for operations in wasmtime to work at the function level where
possible. This means that we don't have to pass around multiple
different maps and a function index, but instead just one map or just
one entry representing a compiled function.

Additionally this change updates where the parallelism of compilation
happens, pushing it into `wasmtime-jit` instead of `wasmtime-environ`.
This is another goal where `wasmtime-jit` will have more knowledge about
module-level pieces with module linking in play. User-facing-wise this
should be the same in terms of parallel compilation, though.

The ultimate goal of this refactoring is to make it easier for the
results of compilation to actually be a set of wasm modules. This means
we won't be able to have a map-per-metadata where the primary key is the
function index, because there will be many modules within one "object
file".

* Don't clear out fields, just don't store them

Persist a smaller set of fields in `CompilationArtifacts` instead of
trying to clear fields out and dynamically not accessing them.
2020-08-03 12:20:51 -05:00
Alex Crichton
026fb8d388 Don't re-parse wasm for debuginfo (#2085)
* Don't re-parse wasm for debuginfo

This commit updates debuginfo parsing to happen during the main
translation of the original wasm module. This avoid re-parsing the wasm
module twice (at least the section-level headers). Additionally this
ties debuginfo directly to a `ModuleTranslation` which makes it easier
to process debuginfo for nested modules in the upcoming module linking
proposal.

The changes here are summarized by taking the `read_debuginfo` function
and merging it with the main module translation that happens which is
driven by cranelift. Some new hooks were added to the module environment
trait to support this, but most of it was integrating with existing hooks.

* Fix tests in debug crate
2020-08-03 09:59:20 -05:00
Yury Delendik
42127aac4e Refactor Cache logic to include debug information (#2065)
* move caching to the CompilationArtifacts

* mv cache_config from Compiler to CompiledModule

* hash isa flags

* no cache for wasm2obj

* mv caching to wasmtime crate

* account each Compiler field when hash
2020-07-23 12:10:13 -05:00
Yury Delendik
399ee0a54c Serialize and deserialize compilation artifacts. (#2020)
* Serialize and deserialize Module
* Use bincode to serialize
* Add wasm_module_serialize; docs
* Simple tests
2020-07-21 15:05:50 -05:00
Alex Crichton
63d5b91930 Wasmtime 0.19.0 and Cranelift 0.66.0 (#2027)
This commit updates Wasmtime's version to 0.19.0, Cranelift's version to
0.66.0, and updates the release notes as well.
2020-07-16 12:46:21 -05:00
Benjamin Bouvier
abf157bd69 machinst x64: Only use the feature flag to enable the x64 new backend;
Before this patch, running the x64 new backend would require both
compiling with --features experimental_x64 and running with
`use_new_backend`.

This patches changes this behavior so that the runtime flag is not
needed anymore: using the feature flag will enforce usage of the new
backend everywhere, making using and testing it much simpler:

    cargo run --features experimental_x64 ;; other CLI options/flags

This also gives a hint at what the meta language generation would look
like after switching to the new backend.

Compiling only with the x64 codegen flag gives a nice compile time speedup.
2020-07-15 13:11:28 +02:00
Alex Crichton
1000f21338 Update wasmparser to 0.59.0 (#2013)
This commit is intended to update wasmparser to 0.59.0. This primarily
includes bytecodealliance/wasm-tools#40 which is a large update to how
parsing and validation works. The impact on Wasmtime is pretty small at
this time, but over time I'd like to refactor the internals here to lean
more heavily on that upstream wasmparser refactoring.

For now, though, the intention is to get on the train of wasmparser's
latest `main` branch to ensure we get bug fixes and such.

As part of this update a few other crates and such were updated. This is
primarily to handle the new encoding of `ref.is_null` where the type is
not part of the instruction encoding any more.
2020-07-13 16:22:41 -05:00
Yury Delendik
091373f9b8 Removes duplicate code in src/obj.rs, crates/obj and crates/jit/object.rs (#1993)
Changes:

 -  Moves object creation code from crates/jit/object.rs to the creates/obj (as ObjectBuilder)
 -   Removes legacy crates/obj/function.rs
 -  Removes write_debugsections
2020-07-08 12:14:19 -05:00
Yury Delendik
bef1b87be0 Write ELF image and instantiate code_memory from it (#1931)
- Create the ELF image from Compilation
- Create CodeMemory from the ELF image
- Link using ELF image
- Remove creation of GDB JIT images from crates/debug
- Move make_trampoline from compiler.rs
2020-07-07 12:51:24 -05:00
Andrew Brown
4d57ae99e3 Upgrade wasmparser to 0.58.0 (#1942)
* Upgrade wasmparser to 0.58.0

* Enable more spec tests
2020-06-30 11:08:21 -05:00
Valentin
c10c79b7ae Correct version of region dependency (#1933) 2020-06-29 08:55:37 -05:00
Peter Huene
9ce67d8cad Merge pull request #1914 from peterhuene/fix-musl-unwind
Register individual FDEs for musl libc.
2020-06-25 13:02:29 -07:00
Peter Huene
4087fcee65 Register individual FDEs for musl libc.
When targeting musl, libunwind is used for the `__register_frame`
implementation.

Unlike when targeting libgcc which expects an entire frame table, the libunwind
implementation expects a single FDE.

This change ensures Wasmtime registers each individual FDE when targeting musl.

Fixes #1904.
2020-06-25 11:42:50 -07:00
Benjamin Bouvier
c9a3f05afd machinst x64: implement calls and int cmp/store/loads;
This makes it possible to run a simple recursive fibonacci function in
wasmtime.
2020-06-25 16:20:33 +02:00
Nick Fitzgerald
58bb5dd953 wasmtime: Add support for func.ref and table.grow with funcrefs
`funcref`s are implemented as `NonNull<VMCallerCheckedAnyfunc>`.

This should be more efficient than using a `VMExternRef` that points at a
`VMCallerCheckedAnyfunc` because it gets rid of an indirection, dynamic
allocation, and some reference counting.

Note that the null function reference is *NOT* a null pointer; it is a
`VMCallerCheckedAnyfunc` that has a null `func_ptr` member.

Part of #929
2020-06-24 10:08:13 -07:00
Nick Fitzgerald
c6f32f666d cranelift-wasm: Retain both the Wasm and Cranelift types of tables 2020-06-23 16:36:10 -07:00
Benjamin Bouvier
c2692ecb8a Wasmtime: allow using the experimental Cranelift x64 backend in cli;
This introduces two changes:

- first, a Cargo feature is added to make it possible to use the
Cranelift x64 backend directly from wasmtime's CLI.
- second, when passing a `cranelift-flags` parameter, and the given
parameter's name doesn't exist at the target-independent flag level, try
to set it as a target-dependent setting.

These two changes make it possible to try out the new x64 backend with:

    cargo run --features experimental_x64 -- run --cranelift-flags use_new_backend=true -- /path/to/a.wasm

Right now, this will fail because most opcodes required by the
trampolines are actually not implemented yet.
2020-06-17 17:18:46 +02:00
Nick Fitzgerald
7e167cae10 externref: Address review feedback 2020-06-15 15:39:26 -07:00
Nick Fitzgerald
f30ce1fe97 externref: implement stack map-based garbage collection
For host VM code, we use plain reference counting, where cloning increments
the reference count, and dropping decrements it. We can avoid many of the
on-stack increment/decrement operations that typically plague the
performance of reference counting via Rust's ownership and borrowing system.
Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
either avoids the reference count increment or delays it until if/when the
`VMExternRef` is cloned.

When passing a `VMExternRef` into compiled Wasm code, we don't want to do
reference count mutations for every compiled `local.{get,set}`, nor for
every function call. Therefore, we use a variation of **deferred reference
counting**, where we only mutate reference counts when storing
`VMExternRef`s somewhere that outlives the activation: into a global or
table. Simultaneously, we over-approximate the set of `VMExternRef`s that
are inside Wasm function activations. Periodically, we walk the stack at GC
safe points, and use stack map information to precisely identify the set of
`VMExternRef`s inside Wasm activations. Then we take the difference between
this precise set and our over-approximation, and decrement the reference
count for each of the `VMExternRef`s that are in our over-approximation but
not in the precise set. Finally, the over-approximation is replaced with the
precise set.

The `VMExternRefActivationsTable` implements the over-approximized set of
`VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
compiled Wasm function logically "borrows" the `VMExternRef` from the
table. Similarly, `global.get` and `table.get` operations clone the gotten
`VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
reference out of the table.

When a `VMExternRef` is returned to host code from a Wasm function, the host
increments the reference count (because the reference is logically
"borrowed" from the `VMExternRefActivationsTable` and the reference count
from the table will be dropped at the next GC).

For more general information on deferred reference counting, see *An
Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf

cc #929

Fixes #1804
2020-06-15 09:39:37 -07:00
Dan Gohman
caa87048ab Wasmtime 0.18.0 and Cranelift 0.65.0. 2020-06-11 17:49:56 -07:00
Yury Delendik
4ebbcb82a9 Refactor CompiledModule to separate compile and linking stages (#1831)
* Refactor how relocs are stored and handled

* refactor CompiledModule::instantiate and link_module

* Refactor DWARF creation: split generation and serialization

* Separate DWARF data transform from instantiation

* rm LinkContext
2020-06-09 15:09:48 -05:00
whitequark
bc555468a7 cranelift: add i64.{ishl,ushr,ashr} libcalls.
These libcalls are useful for 32-bit platforms.

On x86_32 in particular, commit 4ec16fa0 added support for legalizing
64-bit shifts through SIMD operations. However, that legalization
requires SIMD to be enabled and SSE 4.1 to be supported, which is not
acceptable as a hard requirement.
2020-06-05 12:13:49 -07:00
Yury Delendik
6f37204f82 Upgrade gimli to 0.21 (#1819)
* Use gimli 0.21

* rm CFI w Expression

* Don't write .debug_frame twice
2020-06-04 14:34:05 -05:00
Chris Fallin
b8e31d7c8e Fix build warnings (errors on CI) due to mmap flag rename and deprecation. 2020-06-03 09:48:22 -07:00
Dan Gohman
a76639c6fb Wasmtime 0.17.0 and Cranelift 0.64.0. (#1805) 2020-06-02 18:51:59 -07:00
Yury Delendik
15c68f2cc1 Disconnects Store state fields from Compiler (#1761)
*  Moves CodeMemory, VMInterrupts and SignatureRegistry from Compiler
*  CompiledModule holds CodeMemory and GdbJitImageRegistration
*  Store keeps track of its JIT code
*  Makes "jit_int.rs" stuff Send+Sync
*  Adds the threads example.
2020-06-02 13:44:39 -05:00
Nick Fitzgerald
a8ee0554a9 wasmtime: Initial, partial support for externref
This is enough to get an `externref -> externref` identity function
passing.

However, `externref`s that are dropped by compiled Wasm code are (safely)
leaked. Follow up work will leverage cranelift's stack maps to resolve this
issue.
2020-06-01 15:09:51 -07:00
Nick Fitzgerald
137e182750 Update wasmparser to 0.57.0 2020-06-01 14:53:10 -07:00
whitequark
b2e8ed4dc9 cranelift: add i64.[us]{div,rem} libcalls.
These libcalls are useful for 32-bit platforms.
2020-05-22 11:41:56 +00:00
whitequark
26ee986c2f runtime: handle traps on Windows x32. (#1740) 2020-05-21 15:07:05 -05:00
Nick Fitzgerald
1a4f3fb2df Update deps and tests for anyref --> externref
* Update to using `wasmparser` 0.55.0
* Update wasmprinter to 0.2.5
* Update `wat` to 1.0.18, and `wast` to 17.0.0
2020-05-14 12:47:37 -07:00
whitequark
a1dbeee062 Implement X86CallPCRel4 relocations in the JIT linker.
All calls inside a module are relocated with these.
2020-05-09 03:27:06 -07:00
Alex Crichton
a7d90af19d Update wasmparser and wast dependencies (#1663)
Brings in updates to SIMD spec ops renumbering.
2020-05-05 16:13:14 -05:00
Dan Gohman
864cf98c8d Update release notes, wasmtime 0.16, cranelift 0.63. 2020-04-29 17:30:25 -07:00
Alex Crichton
d719ec7e1c Don't try to handle non-wasmtime segfaults (#1577)
This commit fixes an issue in Wasmtime where Wasmtime would accidentally
"handle" non-wasm segfaults while executing host imports of wasm
modules. If a host import segfaulted then Wasmtime would recognize that
wasm code is on the stack, so it'd longjmp out of the wasm code. This
papers over real bugs though in host code and erroneously classified
segfaults as wasm traps.

The fix here was to add a check to our wasm signal handler for if the
faulting address falls in JIT code itself. Actually threading through
all the right information for that check to happen is a bit tricky,
though, so this involved some refactoring:

* A closure parameter to `catch_traps` was added. This closure is
  responsible for classifying addresses as whether or not they fall in
  JIT code. Anything returning `false` means that the trap won't get
  handled and we'll forward to the next signal handler.

* To avoid passing tons of context all over the place, the start
  function is now no longer automatically invoked by `InstanceHandle`.
  This avoids the need for passing all sorts of trap-handling contextual
  information like the maximum stack size and "is this a jit address"
  closure. Instead creators of `InstanceHandle` (like wasmtime) are now
  responsible for invoking the start function.

* To avoid excessive use of `transmute` with lifetimes since the
  traphandler state now has a lifetime the per-instance custom signal
  handler is now replaced with a per-store custom signal handler. I'm
  not entirely certain the purpose of the custom signal handler, though,
  so I'd look for feedback on this part.

A new test has been added which ensures that if a host function
segfaults we don't accidentally try to handle it, and instead we
correctly report the segfault.
2020-04-29 14:24:54 -05:00
Alex Crichton
654e953fbf Revamp memory management of InstanceHandle (#1624)
* Revamp memory management of `InstanceHandle`

This commit fixes a known but in Wasmtime where an instance could still
be used after it was freed. Unfortunately the fix here is a bit of a
hammer, but it's the best that we can do for now. The changes made in
this commit are:

* A `Store` now stores all `InstanceHandle` objects it ever creates.
  This keeps all instances alive unconditionally (along with all host
  functions and such) until the `Store` is itself dropped. Note that a
  `Store` is reference counted so basically everything has to be dropped
  to drop anything, there's no longer any partial deallocation of instances.

* The `InstanceHandle` type's own reference counting has been removed.
  This is largely redundant with what's already happening in `Store`, so
  there's no need to manage two reference counts.

* Each `InstanceHandle` no longer tracks its dependencies in terms of
  instance handles. This set was actually inaccurate due to dynamic
  updates to tables and such, so we needed to revamp it anyway.

* Initialization of an `InstanceHandle` is now deferred until after
  `InstanceHandle::new`. This allows storing the `InstanceHandle` before
  side-effectful initialization, such as copying element segments or
  running the start function, to ensure that regardless of the result of
  instantiation the underlying `InstanceHandle` is still available to
  persist in storage.

Overall this should fix a known possible way to safely segfault Wasmtime
today (yay!) and it should also fix some flaikness I've seen on CI.
Turns out one of the spec tests
(bulk-memory-operations/partial-init-table-segment.wast) exercises this
functionality and we were hitting sporating use-after-free, but only on
Windows.

* Shuffle some APIs around

* Comment weak cycle
2020-04-29 12:47:49 -05:00
Alex Crichton
c9a0ba81a0 Implement interrupting wasm code, reimplement stack overflow (#1490)
* Implement interrupting wasm code, reimplement stack overflow

This commit is a relatively large change for wasmtime with two main
goals:

* Primarily this enables interrupting executing wasm code with a trap,
  preventing infinite loops in wasm code. Note that resumption of the
  wasm code is not a goal of this commit.

* Additionally this commit reimplements how we handle stack overflow to
  ensure that host functions always have a reasonable amount of stack to
  run on. This fixes an issue where we might longjmp out of a host
  function, skipping destructors.

Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.

A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.

When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.

Some fallout included from this change is:

* Unix signal handlers are no longer registered with `SA_ONSTACK`.
  Instead they run on the native stack the thread was already using.
  This is possible since stack overflow isn't handled by hitting the
  guard page, but rather it's explicitly checked for in wasm now. Native
  stack overflow will continue to abort the process as usual.

* Unix sigaltstack management is now no longer necessary since we don't
  use it any more.

* Windows no longer has any need to reset guard pages since we no longer
  try to recover from faults on guard pages.

* On all targets probestack intrinsics are disabled since we use a
  different mechanism for catching stack overflow.

* The C API has been updated with interrupts handles. An example has
  also been added which shows off how to interrupt a module.

Closes #139
Closes #860
Closes #900

* Update comment about magical interrupt value

* Store stack limit as a global value, not a closure

* Run rustfmt

* Handle review comments

* Add a comment about SA_ONSTACK

* Use `usize` for type of `INTERRUPTED`

* Parse human-readable durations

* Bring back sigaltstack handling

Allows libstd to print out stack overflow on failure still.

* Add parsing and emission of stack limit-via-preamble

* Fix new example for new apis

* Fix host segfault test in release mode

* Fix new doc example
2020-04-21 11:03:28 -07:00
Dan Gohman
9364eb1d98 Refactor (#1524)
* Compute instance exports on demand.

Instead having instances eagerly compute a Vec of Externs, and bumping
the refcount for each Extern, compute Externs on demand.

This also enables `Instance::get_export` to avoid doing a linear search.

This also means that the closure returned by `get0` and friends now
holds an `InstanceHandle` to dynamically hold the instance live rather
than being scoped to a lifetime.

* Compute module imports and exports on demand too.

And compute Extern::ty on demand too.

* Add a utility function for computing an ExternType.

* Add a utility function for looking up a function's signature.

* Add a utility function for computing the ValType of a Global.

* Rename wasmtime_environ::Export to EntityIndex.

This helps differentiate it from other Export types in the tree, and
describes what it is.

* Fix a typo in a comment.

* Simplify module imports and exports.

* Make `Instance::exports` return the export names.

This significantly simplifies the public API, as it's relatively common
to need the names, and this avoids the need to do a zip with
`Module::exports`.

This also changes `ImportType` and `ExportType` to have public members
instead of private members and accessors, as I find that simplifies the
usage particularly in cases where there are temporary instances.

* Remove `Instance::module`.

This doesn't quite remove `Instance`'s `module` member, it gets a step
closer.

* Use a InstanceHandle utility function.

* Don't consume self in the `Func::get*` methods.

Instead, just create a closure containing the instance handle and the
export for them to call.

* Use `ExactSizeIterator` to avoid needing separate `num_*` methods.

* Rename `Extern::func()` etc. to `into_func()` etc.

* Revise examples to avoid using `nth`.

* Add convenience methods to instance for getting specific extern types.

* Use the convenience functions in more tests and examples.

* Avoid cloning strings for `ImportType` and `ExportType`.

* Remove more obviated clone() calls.

* Simplify `Func`'s closure state.

* Make wasmtime::Export's fields private.

This makes them more consistent with ExportType.

* Fix compilation error.

* Make a lifetime parameter explicit, and use better lifetime names.

Instead of 'me, use 'instance and 'module to make it clear what the
lifetime is.

* More lifetime cleanups.
2020-04-20 15:55:33 -05:00
Peter Huene
7d88384c0f Merge pull request #1466 from peterhuene/fix-unwind-emit
Refactor unwind generation in Cranelift.
2020-04-16 13:34:23 -07:00
Peter Huene
4d7a283b0c Prevent repeated registration of frames on Linux.
This commit calls `__register_frame` once for the entire frame table on
Linux.

On macOS, it still manually walks the frame table and registers each frame with
`__register_frame`.
2020-04-16 12:14:08 -07:00
Alex Crichton
99adc1d218 Keep frame info registered until internal instance is gone (#1514)
This commit fixes an issue where the global registration of frame data
goes away once the `wasmtime::Module` has been dropped. Even after this
has been dropped, though, there may still be `wasmtime::Func` instances
which reference the original module, so it's only once the underlying
`wasmtime_runtime::Instance` has gone away that we can drop everything.

Closes #1479
2020-04-16 14:00:49 -05:00
Peter Huene
5dba941180 Fix build errors in Windows unwind information. 2020-04-16 11:15:35 -07:00
Peter Huene
f7e9f86ba9 Refactor unwind generation in Cranelift.
This commit makes the following changes to unwind information generation in
Cranelift:

* Remove frame layout change implementation in favor of processing the prologue
  and epilogue instructions when unwind information is requested.  This also
  means this work is no longer performed for Windows, which didn't utilize it.
  It also helps simplify the prologue and epilogue generation code.

* Remove the unwind sink implementation that required each unwind information
  to be represented in final form. For FDEs, this meant writing a
  complete frame table per function, which wastes 20 bytes or so for each
  function with duplicate CIEs.  This also enables Cranelift users to collect the
  unwind information and write it as a single frame table.

* For System V calling convention, the unwind information is no longer stored
  in code memory (it's only a requirement for Windows ABI to do so).  This allows
  for more compact code memory for modules with a lot of functions.

* Deletes some duplicate code relating to frame table generation.  Users can
  now simply use gimli to create a frame table from each function's unwind
  information.

Fixes #1181.
2020-04-16 11:15:32 -07:00
Chris Fallin
7da6101732 Merge pull request #1494 from cfallin/arm64-merge
Add new `MachInst` backend and ARM64 support.
2020-04-16 10:02:02 -07:00
Chris Fallin
48cf2c2f50 Address review comments:
- Undo temporary changes to default features (`all-arch`) and a
  signal-handler test.
- Remove `SIGTRAP` handler: no longer needed now that we've found an
  "undefined opcode" option on ARM64.
- Rename pp.rs to pretty_print.rs in machinst/.
- Only use empty stack-probe on non-x86. As per a comment in
  rust-lang/compiler-builtins [1], LLVM only supports stack probes on
  x86 and x86-64. Thus, on any other CPU architecture, we cannot refer
  to `__rust_probestack`, because it does not exist.
- Rename arm64 to aarch64.
- Use `target` directive in vcode filetests.
- Run the flags verifier, but without encinfo, when using new backends.
- Clean up warning overrides.
- Fix up use of casts: use u32::from(x) and siblings when possible,
  u32::try_from(x).unwrap() when not, to avoid silent truncation.
- Take immutable `Function` borrows as input; we don't actually
  mutate the input IR.
- Lots of other miscellaneous cleanups.

[1] cae3e6ea23/src/probestack.rs (L39)
2020-04-15 17:21:28 -07:00
Alex Crichton
be85242a3f Expose precise offset information in wasmtime::FrameInfo (#1495)
* Consolidate trap/frame information

This commit removes `TrapRegistry` in favor of consolidating this
information in the `FRAME_INFO` we already have in the `wasmtime` crate.
This allows us to keep information generally in one place and have one
canonical location for "map this PC to some original wasm stuff". The
intent for this is to next update with enough information to go from a
program counter to a position in the original wasm file.

* Expose module offset information in `FrameInfo`

This commit implements functionality for `FrameInfo`, the wasm stack
trace of a `Trap`, to return the module/function offset. This allows
knowing the precise wasm location of each stack frame, instead of only
the main trap itself. The intention here is to provide more visibility
into the wasm source when something traps, so you know precisely where
calls were and where traps were, in order to assist in debugging.
Eventually we might use this information for mapping back to native
source languages as well (given sufficient debug information).

This change makes a previously-optional artifact of compilation always
computed on the cranelift side of things. This `ModuleAddressMap` is
then propagated to the same store of information other frame information
is stored within. This also removes the need for passing a `SourceLoc`
with wasm traps or to wasm trap creation, since the backtrace's wasm
frames will be able to infer their own `SourceLoc` from the relevant
program counters.
2020-04-15 08:00:15 -05:00
Chris Fallin
bab0c79c31 ARM64 backend, part 9 / 11: wasmtime support.
This commit adds a few odds and ends required to build wasmtime on ARM64
with the new backend. In particular, it adds:

- Support for the `Arm64Call` relocation type.
- Support for fetching the trap PC when a signal is received.
- A hook for `SIGTRAP`, which is sent by the `brk` opcode (in contrast to
  x86's `SIGILL`).

With the patch sequence up to and including this patch applied,
`wasmtime` can now compile and successfully execute code on arm64. Not
all tests pass yet, but basic Wasm/WASI tests work correctly.
2020-04-11 17:52:44 -07:00
iximeow
4cca510085 Windows FPRs preservation (#1216)
Preserve FPRs as required by the Windows fastcall calling convention.

This exposes an implementation limit due to Cranelift's approach to stack layout, which conflicts with expectations Windows makes in SEH layout - functions where the Cranelift user desires fastcall unwind information, that require preservation of an ABI-reserved FPR, that have a stack frame 240 bytes or larger, now produce an error when compiled. Several wasm spectests were disabled because they would trip this limit. This is a temporary constraint that should be fixed promptly.

Co-authored-by: bjorn3 <bjorn3@users.noreply.github.com>
2020-04-10 13:27:20 -07:00