This commit is a slight refactoring of the `Module` trait and backend in
`cranelift-object`. The goal is to enable parallelization of compilation
when using `cranelift-object`. Currently this is difficult because
`ObjectModule::define_function` requires `&mut self`. This instead
soups up the `define_function_bytes` interface to handle relocations so
compilation can happen externally before defining it in a `Module`. This
also means that `define_function` is now a convenience wrapper around
`define_function_bytes`.
Previously, every call was lowered on AArch64 to a `call` instruction, which
takes a signed 26-bit PC-relative offset. Including the 2-bit left shift, this
gives a range of +/- 128 MB. Longer-distance offsets would cause an impossible
relocation record to be emitted (or rather, a record that a more sophisticated
linker would fix up by inserting a shim/veneer).
This commit adds a notion of "relocation distance" in the MachInst backends,
and provides this information for every call target and symbol reference. The
intent is that backends on architectures like AArch64, where there are different
offset sizes / addressing strategies to choose from, can either emit a regular
call or a load-64-bit-constant / call-indirect sequence, as necessary. This
avoids the need to implement complex linking behavior.
The MachInst driver code provides this information based on the "colocated" bit
in the CLIF symbol references, which appears to have been designed for this
purpose, or at least a similar one. Combined with the `use_colocated_libcalls`
setting, this allows client code to ensure that library calls can link to
library code at any location in the address space.
Separately, the `simplejit` example did not handle `Arm64Call`; rather than doing
so, it appears all that is necessary to get its tests to pass is to set the
`use_colocated_libcalls` flag to false, to make use of the above change. This
fixes the `libcall_function` unit-test in this crate.
Experience with the `define_function` API has shown that returning
borrowed slices of `TrapSite` is not ideal: the returned slice
represents a borrow on the entire `Module`, which makes calling back
into methods taking `&mut self` a bit tricky.
To eliminate the problem, let's require the callers of `define_function`
to provide `TrapSink` instances. This style of API enables them to
control when and how traps are collected, and makes the `object` and
`faerie` backends simpler/more efficient by not having to worry about
trap collection.
The current interface of `cranelift-module` requires consumers who want
to be informed about traps to discover that information through
`Module::Product`, which is backend-specific. Since it's advantageous
to manipulate this information in a backend-agnostic way, this patch
changes `Module::define_function{,_bytes}` to return information about
the traps contained in the function being defined.