* Turn off probestack by default in Cranelift
The probestack feature is not implemented for the aarch64 and s390x
backends and currently the on-by-default status requires the aarch64 and
s390x implementations to be a stub. Turning off probestack by default
allows the s390x and aarch64 backends to panic with an error message to
avoid providing a false sense of security. When the probestack option is
implemented for all backends, however, it may be reasonable to
re-enable.
* aarch64: Improve codegen for AMode fallback
Currently the final fallback for finalizing an `AMode` will generate
both a constant-loading instruction as well as an `add` instruction to
the base register into the same temporary. This commit improves the
codegen by removing the `add` instruction and folding the final add into
the finalized `AMode`. This changes the `extendop` used but both
registers are 64-bit so shouldn't be affected by the extending
operation.
* aarch64: Implement inline stack probes
This commit implements inline stack probes for the aarch64 backend in
Cranelift. The support here is modeled after the x64 support where
unrolled probes are used up to a particular threshold after which a loop
is generated. The instructions here are similar in spirit to x64 except
that unlike x64 the stack pointer isn't modified during the unrolled
loop to avoid needing to re-adjust it back up at the end of the loop.
* Enable inline probestack for AArch64 and Riscv64
This commit enables inline probestacks for the AArch64 and Riscv64
architectures in the same manner that x86_64 has it enabled now. Some
more testing was additionally added since on Unix platforms we should be
guaranteed that Rust's stack overflow message is now printed too.
* Enable probestack for aarch64 in cranelift-fuzzgen
* Address review comments
* Remove implicit stack overflow traps from x64 backend
This commit removes implicit `StackOverflow` traps inserted by the x64
backend for stack-based operations. This was historically required when
stack overflow was detected with page faults but Wasmtime no longer
requires that since it's not suitable for wasm modules which call host
functions. Additionally no other backend implements this form of
implicit trap-code additions so this is intended to synchronize the
behavior of all the backends.
This fixes a test added prior for aarch64 to properly abort the process
instead of accidentally being caught by Wasmtime.
* Fix a style issue
* cranelift: Cleanup `fdemote`/`fpromote` tests
* cranelift: Fix `fdemote`/`fpromote` instruction docs
The verifier fails if the input and output types are the same
for these instructions
* cranelift: Fix `fdemote`/`fpromote` in the interpreter
* fuzzgen: Add `fdemote`/`fpromote`
* fuzzgen: Request only one variable for bswap
This was included by accident. Bswap only has one input, instead of two.
* cranelift: Add `bswap.i128` support
Adds support only for x86, AArch64, S390X.
RISCV does not yet have bswap.
Adds Bswap to the Cranelift IR. Implements the Bswap instruction
in the x64 and aarch64 codegen backends. Cranelift users can now:
```
builder.ins().bswap(value)
```
to get a native byteswap instruction.
* x64: implements the 32- and 64-bit bswap instruction, following
the pattern set by similar unary instrutions (Neg and Not) - it
only operates on a dst register, but is parameterized with both
a src and dst which are expected to be the same register.
As x64 bswap instruction is only for 32- or 64-bit registers,
the 16-bit swap is implemented as a rotate left by 8.
Updated x64 RexFlags type to support emitting for single-operand
instructions like bswap
* aarch64: Bswap gets emitted as aarch64 rev16, rev32,
or rev64 instruction as appropriate.
* s390x: Bswap was already supported in backend, just had to add
a bit of plumbing
* For completeness, added bswap to the interpreter as well.
* added filetests and runtests for each ISA
* added bswap to fuzzgen, thanks to afonso360 for the code there
* 128-bit swaps are not yet implemented, that can be done later
* Cranelift: disable egraphs in fuzzing for now.
As per [this comment], with a few recent discussions it's become clear
that we want to refactor egraphs in a way that will subsume, or make
irrelevant, some of the recent fuzzbugs that have arisen (and likely
lead to others, which we'll want to fix!). Rather than chase these down
then refactor later, it probably makes sense not to spend the human time
or fuzzing time doing so. This PR turns off egraphs support in fuzzing
configurations for now, to be re-enabled later.
[this comment]: https://github.com/bytecodealliance/wasmtime/issues/5126#issuecomment-1291222515
* Disable in cranelift-fuzzgen as well.
As discussed in the 2022/10/19 meeting, this PR removes many of the branch and select instructions that used iflags, in favor if using brz/brnz and select in their place. Additionally, it reworks selectif_spectre_guard to take an i8 input instead of an iflags input.
For reference, the removed instructions are: br_icmp, brif, brff, trueif, trueff, and selectif.
* cranelift: Remove iconst.i128
* bugpoint: Report Changed when only one instruction is mutated
* cranelift: Fix egraph bxor rule
* cranelift: Remove some simple_preopt opts for i128
* fuzzgen: Test compiler flags
* cranelift: Generate `all()` function for all enum flags
This allows a user to iterate all flags that exist.
* fuzzgen: Minimize regalloc_checker compiles
* fuzzgen: Limit the amount of test case inputs
* fuzzgen: Add egraphs flag
It's finally here! 🥳
* cranelift: Add fuzzing comment to settings
* fuzzgen: Add riscv64
* fuzzgen: Unconditionally enable some flags
Remove the boolean types from cranelift, and the associated instructions breduce, bextend, bconst, and bint. Standardize on using 1/0 for the return value from instructions that produce scalar boolean results, and -1/0 for boolean vector elements.
Fixes#3205
Co-authored-by: Afonso Bordado <afonso360@users.noreply.github.com>
Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Chris Fallin <chris@cfallin.org>
* cranelift: Test Forward branching
* fuzzgen: Separate terminators
* fuzzgen: Avoid generating jumptables if we have no valid targets
* fuzzgen: Forward Jump Tables
* fuzzgen: Cleanup some feedback
Thanks @jameysharp!
* fuzzgen: Cleanup block generation
Thanks @jameysharp!
* fuzzgen: Style Cleanups
These were accidentally reverted in a rebase
* fuzzgen: Prevent block0 from being targeted for branches
* fuzzgen: Add jump tables sorting TODO
* fuzzgen: Disable verifier after NaN Canonicalization
We are currently running the verifier twice, once after the nan canonicalization pass, and again when JIT compiling the code.
The verifier first runs in the NaN Canonicalization pass. If it fails it prevents us from getting a nice `cargo fuzz fmt` test case.
So disable the verifier there, but ensure its enabled when JIT compiling.
* fuzzgen: Force enable verifier in cranelift-icache
This is already the default, but since we no longer run the verifier in `fuzzgen` its important to ensure that it runs in the fuzz targets.
* Improve panic message if typevar_operand is None
* cranelift-fuzzgen: Don't allocate for each choice
I don't think the performance of test-case generation is at all
important here. I'm actually doing this in preparation for a bigger
refactor where I want to be able to borrow the list of valid choices for
a given opcode without worrying about lifetimes.
* cranelift-fuzzgen: Remove next_func_index
It's only used locally within `generate_funcrefs`, so it doesn't need to
be in the FunctionBuilder struct.
Also there's already a local counter that I think is good enough for
this. As far as I know, the function indexes only need to be distinct,
not contiguous.
* cranelift-fuzzgen: Separate resources from config
The function-global variables, blocks, etc that are generated before
generating instructions are all owned collections without any lifetime
parameters. By contrast, the Unstructured and Config are both borrowed.
Separating them will make it easier to borrow from the owned resources.
* cranelift: Remove of/nof overflow flags from icmp
Neither Wasmtime nor cg-clif use these flags under any circumstances.
From discussion on #3060 I see it's long been unclear what purpose these
flags served.
Fixes#3060, fixes#4406, and fixes #4875... by deleting all the code
that could have been buggy.
This changes the cranelift-fuzzgen input format by removing some IntCC
options, so I've gone ahead and enabled I128 icmp tests at the same
time. Since only the of/nof cases were failing before, I expect these to
work.
* Restore trapif tests
It's still useful to validate that iadd_ifcout's iflags result can be
forwarded correctly to trapif, and for that purpose it doesn't really
matter what condition code is checked.
* cranelift: Add assert to prevent wrong InstFormat being used for the wrong opcode
* cranelift: Use correct instruction format when inserting opcodes in fuzzgen (fixes#4733)
* cranelift: Use debug assert on InstFormat assert
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime.
After the suggestion of Chris, `Function` has been split into mostly two parts:
- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.
Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:
- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
- `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
- The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.
The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.
A basic fuzz target has been introduced that tries to do the bare minimum:
- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
- This last check is less efficient and less likely to happen, so probably should be rethought a bit.
Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.
Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement.
Fixes#4155.
* cranelift: Remove shifts-small-types runtests
These were moved to the main shifts file in #4519 but this file was accidentaly left in tree.
It also fixes the missing sshr_i8_i8 testcase
* cranelift: Add shifts to fuzzer
* cranelift: Add extends to fuzzer
* cranelift: Use JIT in runtests
Using `cranelift-jit` in run tests allows us to preform relocations and
libcalls. This is important since some instruction lowerings fallback
to libcall's when an extension is missing, or when it's too complicated
to implement manually.
This is also a first step to being able to test `call`'s between functions
in the runtest suite. It should also make it easier to eventually test
TLS relocations, symbol resolution and ABI's.
Another benefit of this is that we also get to test the JIT more, since
it now runs the runtests, and gets some fuzzing via `fuzzgen` (which
uses the `SingleFunctionCompiler`).
This change causes regressions in terms of runtime for the filetests.
I haven't done any serious benchmarking but what I've been seeing is
that it now takes about ~3 seconds to run the testsuite while it
previously took around 2 seconds.
* Add FMA tests for X86
* fuzzgen: Use Switch interface
Turns out this is an interface that the frontend provides.
We should fuzz it.
* cranelift: Restrict index range in Switch emission on fuzzgen
* cranelift: Restrict `br_table` to `i32` indices
In #4498 it was proposed that we should only accept `i32` indices
to `br_table`. The rationale for this is that larger types lead the
users to a false sense of flexibility (since we don't support jump
tables larger than u32's), and narrower types are not well tested
paths that would be safer if we removed them.
* cranelift: Reduce directly from i128 to i32 in Switch
* fuzzgen: Add float support
Add support for generating floats and some float instructions.
* fuzzgen: Enable NaN Canonicalization
Both IEEE754 and the Wasm spec are somewhat loose about what is allowed
to be returned from NaN producing operations. And in practice this changes
from X86 to Aarch64 and others. Even in the same host machine, the
interpreter may produce a code sequence different from cranelift that
generates different NaN's but produces legal results according to the spec.
These differences cause spurious failures in the fuzzer. To fix this
we enable the NaN Canonicalization pass that replaces any NaN's produced
with a single fixed canonical NaN value.
* fuzzgen: Use `MultiAry` when inserting opcodes
This deduplicates a few inserters!