sync test: show the dummy executor will trap (rather than panic) when a
future inside it pends.
async test: show that the executor is hooked up to a future that pends
for a trivial amount of time.
this adds tokio to the dev-dependencies of wiggle, it shouldn't end up
increasing the build burden for the project as a whole since its already
a dev-dependency.
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
async methods used by wiggle currently need to Not have the Send
constraint, so rather than make all use sites pass the argument
to the re-exported async_trait macro, define a new macro that
applies the argument.
* ctx parameter no longer accepted by wiggle::from_witx macro.
* optional async_ parameter specifies which functions are async.
* re-export async_trait::async_trait, so users don't have to take a dep.
This commit updates to the 0.9 version of the witx crate implemented in
WebAssembly/wasi#395. This new version drastically changes code
generation and how we interface with the crate. The intention is to
abstract the code generation aspects and allow code generators to
implement much more low-level instructions to enable more flexible APIs
in the future. Additionally a bunch of `*.witx` files were updated in
the WASI repository.
It's worth pointing out, however, that `wasi-common` does not change as
a result of this change. The shape of the APIs that we need to implement
are effectively the same and the only difference is that the shim
functions generated by wiggle are a bit different.
also, make noreturn functions always return a Trap
wasmtime-wiggle can trivially turn a wiggle::Trap into a wasmtime::Trap.
lucet will have to do the same.
The GuestType trait is used to access data elements in guest memory.
According to the WebAssembly spec, those are always stored in
little-endian byte order, even on big-endian hosts. Accessing such
elements on big-endian hosts therefore requires byte swapping.
Fixed by adding from_le_bytes / to_le_bytes.
Also add configuration to CI to fail doc generation if any links are
broken. Unfortunately we can't blanket deny all warnings in rustdoc
since some are unconditional warnings, but for now this is hopefully
good enough.
Closes#1947
The BorrowChecker methods get inlined as part of the GuestMemory trait.
The BorrowChecker implementation moves out to the engines. Unfortunately
this does mean having a copy in `test-helpers` along with another in
`wasmtime-wiggle`. The `wasmtime-wiggle` copy will move into `wasmtime`
itself in a subsequent PR.
https://github.com/bytecodealliance/wasmtime/issues/1917
* Implement interrupting wasm code, reimplement stack overflow
This commit is a relatively large change for wasmtime with two main
goals:
* Primarily this enables interrupting executing wasm code with a trap,
preventing infinite loops in wasm code. Note that resumption of the
wasm code is not a goal of this commit.
* Additionally this commit reimplements how we handle stack overflow to
ensure that host functions always have a reasonable amount of stack to
run on. This fixes an issue where we might longjmp out of a host
function, skipping destructors.
Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.
A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.
When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.
Some fallout included from this change is:
* Unix signal handlers are no longer registered with `SA_ONSTACK`.
Instead they run on the native stack the thread was already using.
This is possible since stack overflow isn't handled by hitting the
guard page, but rather it's explicitly checked for in wasm now. Native
stack overflow will continue to abort the process as usual.
* Unix sigaltstack management is now no longer necessary since we don't
use it any more.
* Windows no longer has any need to reset guard pages since we no longer
try to recover from faults on guard pages.
* On all targets probestack intrinsics are disabled since we use a
different mechanism for catching stack overflow.
* The C API has been updated with interrupts handles. An example has
also been added which shows off how to interrupt a module.
Closes#139Closes#860Closes#900
* Update comment about magical interrupt value
* Store stack limit as a global value, not a closure
* Run rustfmt
* Handle review comments
* Add a comment about SA_ONSTACK
* Use `usize` for type of `INTERRUPTED`
* Parse human-readable durations
* Bring back sigaltstack handling
Allows libstd to print out stack overflow on failure still.
* Add parsing and emission of stack limit-via-preamble
* Fix new example for new apis
* Fix host segfault test in release mode
* Fix new doc example
* Shuffle around the wiggle crates
This commit reorganizes the wiggle crates slightly by performing the
following transforms:
* The `crates/wiggle` crate, previously named `wiggle`, was moved to
`crates/wiggle/crates/macro` and is renamed to `wiggle-macro`.
* The `crates/wiggle/crates/runtime` crate, previously named
`wiggle-runtime`, was moved to `crates/wiggle` and is renamed to
`wiggle`.
* The new `wiggle` crate depends on `wiggle-macro` and reexports the macro.
The goal here is that consumers only deal with the `wiggle` crate
itself. No more crates depend on `wiggle-runtime` and all dependencies
are entirely on just the `wiggle` crate.
* Remove the `crates/wiggle/crates` directory
Move everything into `crates/wiggle` directly, like `wasi-common`
* Add wiggle-macro to test-all script
* Fixup a test