* x64: expand FloatCC enum in ISLE
* isle: regenerate manifests
* isle: generate all enum fields in `clif.isle`
This expands the `gen_isle` function to write all of the immediate
`enum`s out explicitly in `clif.isle`. Non-`enum` immediates are still
`extern primitive`.
* Only compile `enum_values` with `rebuild-isle` feature
* Only compile `gen_enum_isle` with `rebuild-isle` feature
Peepmatic was an early attempt at a DSL for peephole optimizations, with the
idea that maybe sometime in the future we could user it for instruction
selection as well. It didn't really pan out, however:
* Peepmatic wasn't quite flexible enough, and adding new operators or snippets
of code implemented externally in Rust was a bit of a pain.
* The performance was never competitive with the hand-written peephole
optimizers. It was *very* size efficient, but that came at the cost of
run-time efficiency. Everything was table-based and interpreted, rather than
generating any Rust code.
Ultimately, because of these reasons, we never turned Peepmatic on by default.
These days, we just landed the ISLE domain-specific language, and it is better
suited than Peepmatic for all the things that Peepmatic was originally designed
to do. It is more flexible and easy to integrate with external Rust code. It is
has better time efficiency, meeting or even beating hand-written code. I think a
small part of the reason why ISLE excels in these things is because its design
was informed by Peepmatic's failures. I still plan on continuing Peepmatic's
mission to make Cranelift's peephole optimizer passes generated from DSL rewrite
rules, but using ISLE instead of Peepmatic.
Thank you Peepmatic, rest in peace!
On the build side, this commit introduces two things:
1. The automatic generation of various ISLE definitions for working with
CLIF. Specifically, it generates extern type definitions for clif opcodes and
the clif instruction data `enum`, as well as extractors for matching each clif
instructions. This happens inside the `cranelift-codegen-meta` crate.
2. The compilation of ISLE DSL sources to Rust code, that can be included in the
main `cranelift-codegen` compilation.
Next, this commit introduces the integration glue code required to get
ISLE-generated Rust code hooked up in clif-to-x64 lowering. When lowering a clif
instruction, we first try to use the ISLE code path. If it succeeds, then we are
done lowering this instruction. If it fails, then we proceed along the existing
hand-written code path for lowering.
Finally, this commit ports many lowering rules over from hand-written,
open-coded Rust to ISLE.
In the process of supporting ISLE, this commit also makes the x64 `Inst` capable
of expressing SSA by supporting 3-operand forms for all of the existing
instructions that only have a 2-operand form encoding:
dst = src1 op src2
Rather than only the typical x86-64 2-operand form:
dst = dst op src
This allows `MachInst` to be in SSA form, since `dst` and `src1` are
disentangled.
("3-operand" and "2-operand" are a little bit of a misnomer since not all
operations are binary operations, but we do the same thing for, e.g., unary
operations by disentangling the sole operand from the result.)
There are two motivations for this change:
1. To allow ISLE lowering code to have value-equivalence semantics. We want ISLE
lowering to translate a CLIF expression that evaluates to some value into a
`MachInst` expression that evaluates to the same value. We want both the
lowering itself and the resulting `MachInst` to be pure and referentially
transparent. This is both a nice paradigm for compiler writers that are
authoring and maintaining lowering rules and is a prerequisite to any sort of
formal verification of our lowering rules in the future.
2. Better align `MachInst` with `regalloc2`'s API, which requires that the input
be in SSA form.
This opcode was removed as part of the old-backend cleanup in #3446.
While this opcode will definitely go away eventually, it is
unfortunately still used today in Lucet (as we just discovered while
working to upgrade Lucet's pinned Cranelift version). Lucet is
deprecated and slated to eventually be completely sunset in favor of
Wasmtime; but until that happens, we need to keep this opcode.
This also paves the way for unifying TargetIsa and MachBackend, since now they map one to one. In theory the two traits could be merged, which would be nice to limit the number of total concepts. Also they have quite different responsibilities, so it might be fine to keep them separate.
Interestingly, this PR started as removing RegInfo from the TargetIsa trait since the adapter returned a dummy value there. From the fallout, noticed that all Display implementations didn't needed an ISA anymore (since these were only used to render ISA specific registers). Also the whole family of RegInfo / ValueLoc / RegUnit was exclusively used for the old backend, and these could be removed. Notably, some IR instructions needed to be removed, because they were using RegUnit too: this was the oddball of regfill / regmove / regspill / copy_special, which were IR instructions inserted by the old regalloc. Fare thee well!
* Fix some nightly dead code warnings
Looks like the "struct field not used" lint has improved on nightly and
caught a few more instances of fields that were never actually read.
* Fix windows
Implemented `Smulhi` for the Cranelift interpreter, performing signed
integer multiplication and producing the high half of a double-length
result.
Copyright (c) 2021, Arm Limited
Implemented the following Opcodes for the Cranelift interpreter:
- `Unarrow` to combine two SIMD vectors into a new vector with twice
the lanes but half the width, with signed inputs which are clamped to
`0x00`.
- `Uunarrow` to perform the same operation as `Unarrow` but treating
inputs as unsigned.
- `Snarrow` to perform the same operation as `Unarrow` but treating
both inputs and outputs as signed, and saturating accordingly.
Note that all 3 instructions saturate at the type boundaries.
Copyright (c) 2021, Arm Limited
- Fixed CI tests for AArch64 and old x86.
- Rename `simd-umulhi.clif` to `umulhi.clif`.
- Rename `simd-umulhi-aarch64.clif` to `simd-umulhi.clif`.
Copyright (c) 2021, Arm Limited.
The tests for the SIMD floating-point maximum and minimum operations
require particular care because the handling of the NaN values is
non-deterministic and may vary between platforms. There is no way to
match several NaN values in a test, so the solution is to extract the
non-deterministic test cases into a separate file that is subsequently
replicated for every backend under test, with adjustments made to the
expected results.
Copyright (c) 2021, Arm Limited.