* Adding in trampoline compiling method for ISA
* Adding support for indirect call to memory address
* Refactoring frame to externalize defined locals, so it removes WASM depedencies in trampoline case
* Adding initial version of trampoline for testing
* Refactoring trampoline to be re-used by other architectures
* Initial wiring for winch with wasmtime
* Add a Wasmtime CLI option to select `winch`
This is effectively an option to select the `Strategy` enumeration.
* Implement `Compiler::compile_function` for Winch
Hook this into the `TargetIsa::compile_function` hook as well. Currently
this doesn't take into account `Tunables`, but that's left as a TODO for
later.
* Filling out Winch append_code method
* Adding back in changes from previous branch
Most of these are a WIP. It's missing trampolines for x64, but a basic
one exists for aarch64. It's missing the handling of arguments that
exist on the stack.
It currently imports `cranelift_wasm::WasmFuncType` since it's what's
passed to the `Compiler` trait. It's a bit awkward to use in the
`winch_codegen` crate since it mostly operates on `wasmparser` types.
I've had to hack in a conversion to get things working. Long term, I'm
not sure it's wise to rely on this type but it seems like it's easier on
the Cranelift side when creating the stub IR.
* Small API changes to make integration easier
* Adding in new FuncEnv, only a stub for now
* Removing unneeded parts of the old PoC, and refactoring trampoline code
* Moving FuncEnv into a separate file
* More comments for trampolines
* Adding in winch integration tests for first pass
* Using new addressing method to fix stack pointer error
* Adding test for stack arguments
* Only run tests on x86 for now, it's more complete for winch
* Add in missing documentation after rebase
* Updating based on feedback in draft PR
* Fixing formatting on doc comment for argv register
* Running formatting
* Lock updates, and turning on winch feature flags during tests
* Updating configuration with comments to no longer gate Strategy enum
* Using the winch-environ FuncEnv, but it required changing the sig
* Proper comment formatting
* Removing wasmtime-winch from dev-dependencies, adding the winch feature makes this not necessary
* Update doc attr to include winch check
* Adding winch feature to doc generation, which seems to fix the feature error in CI
* Add the `component-model` feature to the cargo doc invocation in CI
To match the metadata used by the docs.rs invocation when building docs.
* Add a comment clarifying the usage of `component-model` for docs.rs
* Correctly order wasmtime-winch and winch-environ in the publish script
* Ensure x86 test dependencies are included in cfg(target_arch)
* Further constrain Winch tests to x86_64 _and_ unix
---------
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
Co-authored-by: Saúl Cabrera <saulecabrera@gmail.com>
* winch(x64): Initial implementation for function calls
This change adds the main building blocks for calling locally defined
functions. Support for function imports will be added iteratively after this
change lands and once trampolines are supported.
To support function calls, this change introduces the following functionality to
the MacroAssembler:
* `pop` to pop the machine stack into a given register, which in the case of
this change, translates to the x64 pop instruction.
* `call` to a emit a call to locally defined functions.
* `address_from_sp` to construct memory addresses with the SP as a base.
* `free_stack` to emit the necessary instrunctions to claim stack space.
The heavy lifting of setting up and emitting the function call is done through
the implementation of `FnCall`.
* Fix spill behaviour in function calls and add more documentation
This commits adds a more detailed documentation to the `call.rs` module.
It also fixes a couple of bugs, mainly:
* The previous commit didn't account for memory addresses used as arguments for
the function call, any memory entry in the value stack used as a function
argument should be tracked and then used to claim that memory when the function
call ends. We could `pop` and do this implicitly, but we can also track this
down and emit a single instruction to decrement the stack pointer, which will
result in better code.
* Introduce a differentiator between addresses relative or absolute to the stack
pointer. When passing arguments in the stack -- assuming that SP at that point
is aligned for the function call -- we should store the arguments relative to
the absolute position of the stack pointer and when addressing a memory entry in
the Wasm value stack, we should use an address relative to the offset and the
position of the stack pointer.
* Simplify tracking of the stack space needed for emitting a function call
* x64: Take SIGFPE signals for divide traps
Prior to this commit Wasmtime would configure `avoid_div_traps=true`
unconditionally for Cranelift. This, for the division-based
instructions, would change emitted code to explicitly trap on trap
conditions instead of letting the `div` x86 instruction trap.
There's no specific reason for Wasmtime, however, to specifically avoid
traps in the `div` instruction. This means that the extra generated
branches on x86 aren't necessary since the `div` and `idiv` instructions
already trap for similar conditions as wasm requires.
This commit instead disables the `avoid_div_traps` setting for
Wasmtime's usage of Cranelift. Subsequently the codegen rules were
updated slightly:
* When `avoid_div_traps=true`, traps are no longer emitted for `div`
instructions.
* The `udiv`/`urem` instructions now list their trap as divide-by-zero
instead of integer overflow.
* The lowering for `sdiv` was updated to still explicitly check for zero
but the integer overflow case is deferred to the instruction itself.
* The lowering of `srem` no longer checks for zero and the listed trap
for the `div` instruction is a divide-by-zero.
This means that the codegen for `udiv` and `urem` no longer have any
branches. The codegen for `sdiv` removes one branch but keeps the
zero-check to differentiate the two kinds of traps. The codegen for
`srem` removes one branch but keeps the -1 check since the semantics of
`srem` mismatch with the semantics of `idiv` with a -1 divisor
(specifically for INT_MIN).
This is unlikely to have really all that much of a speedup but was
something I noticed during #6008 which seemed like it'd be good to clean
up. Plus Wasmtime's signal handling was already set up to catch
`SIGFPE`, it was just never firing.
* Remove the `avoid_div_traps` cranelift setting
With no known users currently removing this should be possible and helps
simplify the x64 backend.
* x64: GC more support for avoid_div_traps
Remove the `validate_sdiv_divisor*` pseudo-instructions and clean up
some of the ISLE rules now that `div` is allowed to itself trap
unconditionally.
* x64: Store div trap code in instruction itself
* Keep divisors in registers, not in memory
Don't accidentally fold multiple traps together
* Handle EXC_ARITHMETIC on macos
* Update emit tests
* Update winch and tests
* x64: Add precise-output tests for div traps
This adds a suite of `*.clif` files which are intended to test the
`avoid_div_traps=true` compilation of the `{s,u}{div,rem}` instructions.
* x64: Remove conditional regalloc in `Div` instruction
Move the 8-bit `Div` logic into a dedicated `Div8` instruction to avoid
having conditionally-used registers with respect to regalloc.
* x64: Migrate non-trapping, `udiv`/`urem` to ISLE
* x64: Port checked `udiv` to ISLE
* x64: Migrate urem entirely to ISLE
* x64: Use `test` instead of `cmp` to compare-to-zero
* x64: Port `sdiv` lowering to ISLE
* x64: Port `srem` lowering to ISLE
* Tidy up regalloc behavior and fix tests
* Update docs and winch
* Review comments
* Reword again
* More refactoring test fixes
* More test fixes
* Refactor the structure and responsibilities of `CodeGenContext`
This commit refactors how the `CodeGenContext` is used throughout the code
generation process, making it easier to pass it around when more flexibility is
desired in the MacroAssembler to perform the lowering of certain instructions.
As of this change, the responsibility of the `CodeGenContext` is to provide an
interface for operations that require an orchestration between the register
allocator, the value stack and function's frame. The MacroAssembler is removed
from the CodeGenContext as is passed as a dependency where needed, effectly
using it as an independent code generation interface only.
By giving more responsibilities to the `CodeGenContext` we can clearly separate
the concerns of the register allocator, which previously did more than it
should (e.g. popping values and spilling).
This change ultimately allows passing in the `CodeGenContext` to the
`MacroAssembler` when a given instruction cannot be generically described
through a common interface. Allowing each implementation to decide the best way
to lower a particular instruction.
* winch: Add support for the WebAssembly `<i32|i64>.div_*` instructions
Given that some architectures have very specific requirements on how to handle
division, this change uses `CodeGenContext` as a dependency to the `div`
MacroAssembler instruction to ensure that each implementation can decide on how to lower the
division. This approach also allows -- in architectures where division can be
expressed as an ordinary binary operation -- to rely on the
`CodeGenContext::i32_binop` or `CodeGenContext::i64_binop` helpers.
This patch adds complete support for the `sub` and `add` WebAssembly instructions
for x64, and complete support for the `add` WebAssembly instruction for aarch64.
This patch also refactors how the binary operations get constructed within the
`VisitOperator` trait implementation. The refactor adds methods in the
`CodeGenContext` to abstract all the common steps to emit binary operations,
making this process less repetitive and less brittle (e.g. omitting to push the resulting value
to the stack, or omitting to free registers after used).
This patch also improves test coverage and refactors the filetests directory to make it
easier to add tests for other instructions.
This commit adds some missing conversions between Winch's x64 `Reg` type and
Cranelift's `Gpr`, `WritableGpr` and `GprMemImm`. This results in less
boilerplate. This is also a bit of groundwork in the assembler to support
the rest of the integer binary instructions.
This patch introduces basic aarch64 code generation by using
`cranelift-codegen`'s backend.
This commit *does not*:
* Change the semantics of the code generation
* Adds support for other Wasm instructions
The most notable change in this patch is how addressing modes are handled at the
MacroAssembler layer: instead of having a canonical address representation, this
patch introduces the addressing mode as an associated type in the
MacroAssembler trait. This approach has the advantage that gives each ISA enough
flexiblity to describe the addressing modes and their constraints in isolation
without having to worry on how a particular addressing mode is going to affect
other ISAs. In the case of Aarch64 this becomes useful to describe indexed
addressing modes (particularly from the stack pointer).
This patch uses the concept of a shadow stack pointer (x28) as a workaround to
Aarch64's stack pointer 16-byte alignment. This constraint is enforced by:
* Introducing specialized addressing modes when using the real stack pointer; this
enables auditing when the real stack pointer is used. As of this change, the
real stack pointer is only used in the function's prologue and epilogue.
* Asserting that the real stack pointer is not used as a base for addressing
modes.
* Ensuring that at any point during the code generation process where the stack
pointer changes (e.g. when stack space is allocated / deallocated) the value of
the real stack pointer is copied into the shadow stack pointer.