This policy attempts to reuse the same instance slot for subsequent
instantiations of the same module. This is particularly useful when
using a pooling backend such as memfd that benefits from this reuse: for
example, in the memfd case, instantiating the same module into the same
slot allows us to avoid several calls to mmap() because the same
mappings can be reused.
The policy tracks a freelist per "compiled module ID", and when
allocating a slot for an instance, tries these three options in order:
1. A slot from the freelist for this module (i.e., last used for another
instantiation of this particular module), or
3. A slot that was last used by some other module or never before.
The "victim" slot for choice 2 is randomly chosen.
The data structures are carefully designed so that all updates are O(1),
and there is no retry-loop in any of the random selection.
This policy is now the default when the memfd backend is selected via
the `memfd-allocator` feature flag.
As first suggested by Jan on the Zulip here [1], a cheap and effective
way to obtain copy-on-write semantics of a "backing image" for a Wasm
memory is to mmap a file with `MAP_PRIVATE`. The `memfd` mechanism
provided by the Linux kernel allows us to create anonymous,
in-memory-only files that we can use for this mapping, so we can
construct the image contents on-the-fly then effectively create a CoW
overlay. Furthermore, and importantly, `madvise(MADV_DONTNEED, ...)`
will discard the CoW overlay, returning the mapping to its original
state.
By itself this is almost enough for a very fast
instantiation-termination loop of the same image over and over,
without changing the address space mapping at all (which is
expensive). The only missing bit is how to implement
heap *growth*. But here memfds can help us again: if we create another
anonymous file and map it where the extended parts of the heap would
go, we can take advantage of the fact that a `mmap()` mapping can
be *larger than the file itself*, with accesses beyond the end
generating a `SIGBUS`, and the fact that we can cheaply resize the
file with `ftruncate`, even after a mapping exists. So we can map the
"heap extension" file once with the maximum memory-slot size and grow
the memfd itself as `memory.grow` operations occur.
The above CoW technique and heap-growth technique together allow us a
fastpath of `madvise()` and `ftruncate()` only when we re-instantiate
the same module over and over, as long as we can reuse the same
slot. This fastpath avoids all whole-process address-space locks in
the Linux kernel, which should mean it is highly scalable. It also
avoids the cost of copying data on read, as the `uffd` heap backend
does when servicing pagefaults; the kernel's own optimized CoW
logic (same as used by all file mmaps) is used instead.
[1] https://bytecodealliance.zulipchat.com/#narrow/stream/206238-general/topic/Copy.20on.20write.20based.20instance.20reuse/near/266657772