* wiggle: Inline some trivial functions
This commit marks a number of functions in wiggle as `#[inline]` as
they're otherwise trivial, mostly returning constants. This comes out of
some work I looked at recently with Andrew where some of these functions
showed up in profiles when they shouldn't.
* wiggle: Optimize the `GuestMemory` for shared memory
This commit implements a minor optimization to the `GuestMemory`
implementation for Wasmtime to skip most methods if a shared memory is
in play. Shared memories never get borrowed and this can be used to
internally skip some borrow-checker methods.
* wiggle: Optimize `GuestPtr::to_vec`
This commit replaces the safe implementation of `GuestPtr::to_vec` with
an unsafe implementation. The purpose of this is to speed up the
function when used with shared memory which otherwise performs a bunch
of atomic reads for types like `u8` which does validation-per-element
and isn't vectorizable. On a benchmark I was helping Andrew with this
sped up the host code enough to the point that guest code dwarfed the
execution time.
* Fix build
* wiggle: copy guest strings from shared memory
Along the same lines as #5471, this change adds a new smart pointer,
`GuestStrCow`, to copy the string bytes over from Wasm memory to the
host when the string is found in shared memory. This is necessary to
maintain Rust guarantees: with shared memory, the bytes backing a
`GuestStr` could be altered by another thread and this would invalidate
the assumption that we can dereference at any point to `&str`.
`GuestStrCow` is essentially a wrapper around `GuestStr` when the memory
is not shared but copies the memory region into a `String` when the
memory is shared.
This change updates the uses of Wiggle strings in both wasi-common and
wasi-crypto.
* review: perform UTF-8 check on `GuestStr` construction
This change upgrades `UnsafeGuestSlice` in Wiggle to expose more
functionality to be able to use `std::ptr::copy` for writing bytes into
Wasm shared memory. Additionally, it adds a new `GuestCow` type for
delineating between Wasm memory regions that can be borrowed (non-shared
memory) or must be copied (shared memory) in order to maintain Rust
guarantees.
With these in place, it is now possible to implement the `preview1`
"read" functions for shared memory. Previously, these would panic if
attempting to copy to a shared memory. This change removes the panic and
introduces some (rather complex) logic for handling both the shared and
non-shared cases:
- if reading into a Wasm non-shared memory, Wiggle guarantees that no
other guest pointers will touch the memory region and, in the absence
of concurrency, a WASI function can write directly to this memory
- if reading into a Wasm shared memory, the memory region can be
concurrently modified. At @alexcrichton's request re: Rust safety,
this change copies all of the bytes into an intermediate buffer before
using `std::ptr::copy` to move them into Wasm memory.
This change only applies to the `preview0` and `preview1`
implementations of `wasi-common`. Fixing up other WASI implementations
(esp. wasi-crypto) is left for later.
This commit refactors the internals of `wiggle` to have fewer raw pointers and more liberally use `&[UnsafeCell<_>]`. The purpose of this refactoring is to more strictly thread through lifetime information throughout the crate to avoid getting it wrong. Additionally storing `UnsafeCell<T>` at rest pushes the unsafety of access to the leaves of modifications where Rust safety guarantees are upheld. Finally this provides what I believe is a safer internal representation of `WasmtimeGuestMemory` since it technically holds onto `&mut [u8]` un-soundly as other `&mut T` pointers are handed out.
Additionally generated `GuestTypeTransparent` impls in the `wiggle` macro were removed because they are not safe for shared memories as-is and otherwise aren't needed for WASI today. The trait has been updated to indicate that all bit patterns must be valid in addition to having the same representation on the host as in the guest to accomodate this.
* wiggle: adapt Wiggle strings for shared use
This is an extension of #5229 for the `&str` and `&mut str` types. As
documented there, we are attempting to maintain Rust guarantees for
slices that Wiggle hands out in the presence of WebAssembly shared
memory, in which case multiple threads could be modifying the underlying
data of the slice.
This change changes the API of `GuestPtr` to return an `Option` which is
`None` when attempting to view the WebAssembly data as a string and the
underlying WebAssembly memory is shared. This reuses the
`UnsafeGuestSlice` structure from #5229 to do so and appropriately marks
the region as borrowed in Wiggle's manual borrow checker. Each original
call site in this project's WASI implementations is fixed up to `expect`
that a non-shared memory is used. (Note that I can find no uses of
`GuestStrMut` in the WASI implementations).
* wiggle: make `GuestStr*` containers wrappers of `GuestSlice*`
This change makes it possible to reuse the underlying logic in
`UnsafeGuestSlice` and the `GuestSlice*` implementations to continue to
expose the `GuestStr` and `GuestStrMut` types. These types now are
simple wrappers of their `GuestSlice*` variant. The UTF-8 validation
that distinguished `GuestStr*` now lives in the `TryFrom`
implementations for each type.
* wiggle: adapt Wiggle guest slices for `unsafe` shared use
When multiple threads can concurrently modify a WebAssembly shared
memory, the underlying data for a Wiggle `GuestSlice` and
`GuestSliceMut` could change due to access from other threads. This
breaks Rust guarantees when `&[T]` and `&mut [T]` slices are handed out.
This change modifies `GuestPtr` to make `as_slice` and `as_slice_mut`
return an `Option` which is `None` when the underlying WebAssembly
memory is shared.
But WASI implementations still need access to the underlying WebAssembly
memory, both to read to it and write from it. This change adds new APIs:
- `GuestPtr::to_vec` copies the bytes from WebAssembly memory (from
which we can safely take a `&[T]`)
- `GuestPtr::as_unsafe_slice_mut` returns a wrapper `struct` from which
we can `unsafe`-ly return a mutable slice (users must accept the
unsafety of concurrently modifying a `&mut [T]`)
This approach allows us to maintain Wiggle's borrow-checking
infrastructure, which enforces the guarantee that Wiggle will not modify
overlapping regions, e.g. This is important because the underlying
system calls may expect this. Though other threads may modify the same
underlying region, this is impossible to prevent; at least Wiggle will
not be able to do so.
Finally, the changes to Wiggle's API are propagated to all WASI
implementations in Wasmtime. For now, code locations that attempt to get
a guest slice will panic if the underlying memory is shared. Note that
Wiggle is not enabled for shared memory (that will come later in
something like #5054), but when it is, these panics will be clear
indicators of locations that must be re-implemented in a thread-safe
way.
* review: remove double cast
* review: refactor to include more logic in 'UnsafeGuestSlice'
* review: add reference to #4203
* review: link all thread-safe WASI fixups to #5235
* fix: consume 'UnsafeGuestSlice' during conversion to safe versions
* review: remove 'as_slice' and 'as_slice_mut'
* review: use 'as_unsafe_slice_mut' in 'to_vec'
* review: add `UnsafeBorrowResult`
This change is the first in a series of changes to support shared memory
in Wiggle. Since Wiggle was written under the assumption of
single-threaded guest-side access, this change introduces a `shared`
field to guest memories in order to flag when this assumption will not
be the case. This change always sets `shared` to `false`; once a few
more pieces are in place, `shared` will be set dynamically when a shared
memory is detected, e.g., in a change like #5054.
Using the `shared` field, we can now decide to load Wiggle values
differently under the new assumptions. This change makes the guest
`T::read` and `T::write` calls into `Relaxed` atomic loads and stores in
order to maintain WebAssembly's expected memory consistency guarantees.
We choose Rust's `Relaxed` here to match the `Unordered` memory
consistency described in the [memory model] section of the ECMA spec.
These relaxed accesses are done unconditionally, since we theorize that
the performance benefit of an additional branch vs a relaxed load is
not much.
[memory model]: https://tc39.es/ecma262/multipage/memory-model.html#sec-memory-model
Since 128-bit scalar types do not have `Atomic*` equivalents, we remove
their `T::read` and `T::write` implementations here. They are unused by
any WASI implementations in the project.
* Return `anyhow::Error` from host functions instead of `Trap`
This commit refactors how errors are modeled when returned from host
functions and additionally refactors how custom errors work with `Trap`.
At a high level functions in Wasmtime that previously worked with
`Result<T, Trap>` now work with `Result<T>` instead where the error is
`anyhow::Error`. This includes functions such as:
* Host-defined functions in a `Linker<T>`
* `TypedFunc::call`
* Host-related callbacks like call hooks
Errors are now modeled primarily as `anyhow::Error` throughout Wasmtime.
This subsequently removes the need for `Trap` to have the ability to
represent all host-defined errors as it previously did. Consequently the
`From` implementations for any error into a `Trap` have been removed
here and the only embedder-defined way to create a `Trap` is to use
`Trap::new` with a custom string.
After this commit the distinction between a `Trap` and a host error is
the wasm backtrace that it contains. Previously all errors in host
functions would flow through a `Trap` and get a wasm backtrace attached
to them, but now this only happens if a `Trap` itself is created meaning
that arbitrary host-defined errors flowing from a host import to the
other side won't get backtraces attached. Some internals of Wasmtime
itself were updated or preserved to use `Trap::new` to capture a
backtrace where it seemed useful, such as when fuel runs out.
The main motivation for this commit is that it now enables hosts to
thread a concrete error type from a host function all the way through to
where a wasm function was invoked. Previously this could not be done
since the host error was wrapped in a `Trap` that didn't provide the
ability to get at the internals.
A consequence of this commit is that when a host error is returned that
isn't a `Trap` we'll capture a backtrace and then won't have a `Trap` to
attach it to. To avoid losing the contextual information this commit
uses the `Error::context` method to attach the backtrace as contextual
information to ensure that the backtrace is itself not lost.
This is a breaking change for likely all users of Wasmtime, but it's
hoped to be a relatively minor change to workaround. Most use cases can
likely change `-> Result<T, Trap>` to `-> Result<T>` and otherwise
explicit creation of a `Trap` is largely no longer necessary.
* Fix some doc links
* add some tests and make a backtrace type public (#55)
* Trap: avoid a trailing newline in the Display impl
which in turn ends up with three newlines between the end of the
backtrace and the `Caused by` in the anyhow Debug impl
* make BacktraceContext pub, and add tests showing downcasting behavior of anyhow::Error to traps or backtraces
* Remove now-unnecesary `Trap` downcasts in `Linker::module`
* Fix test output expectations
* Remove `Trap::i32_exit`
This commit removes special-handling in the `wasmtime::Trap` type for
the i32 exit code required by WASI. This is now instead modeled as a
specific `I32Exit` error type in the `wasmtime-wasi` crate which is
returned by the `proc_exit` hostcall. Embedders which previously tested
for i32 exits now downcast to the `I32Exit` value.
* Remove the `Trap::new` constructor
This commit removes the ability to create a trap with an arbitrary error
message. The purpose of this commit is to continue the prior trend of
leaning into the `anyhow::Error` type instead of trying to recreate it
with `Trap`. A subsequent simplification to `Trap` after this commit is
that `Trap` will simply be an `enum` of trap codes with no extra
information. This commit is doubly-motivated by the desire to always use
the new `BacktraceContext` type instead of sometimes using that and
sometimes using `Trap`.
Most of the changes here were around updating `Trap::new` calls to
`bail!` calls instead. Tests which assert particular error messages
additionally often needed to use the `:?` formatter instead of the `{}`
formatter because the prior formats the whole `anyhow::Error` and the
latter only formats the top-most error, which now contains the
backtrace.
* Merge `Trap` and `TrapCode`
With prior refactorings there's no more need for `Trap` to be opaque or
otherwise contain a backtrace. This commit parse down `Trap` to simply
an `enum` which was the old `TrapCode`. All various tests and such were
updated to handle this.
The main consequence of this commit is that all errors have a
`BacktraceContext` context attached to them. This unfortunately means
that the backtrace is printed first before the error message or trap
code, but given all the prior simplifications that seems worth it at
this time.
* Rename `BacktraceContext` to `WasmBacktrace`
This feels like a better name given how this has turned out, and
additionally this commit removes having both `WasmBacktrace` and
`BacktraceContext`.
* Soup up documentation for errors and traps
* Fix build of the C API
Co-authored-by: Pat Hickey <pat@moreproductive.org>
* wiggle: no longer need to guard wasmtime integration behind a feature
this existed so we could use wiggle in lucet, but lucet is long EOL
* replace wiggle::Trap with wiggle::wasmtime_crate::Trap
* wiggle tests: unwrap traps because we cant assert_eq on them
* wasi-common: emit a wasmtime::Trap instead of a wiggle::Trap
formally add a dependency on wasmtime here to make it obvious, though
we do now have a transitive one via wiggle no matter what (and therefore
can get rid of the default-features=false on the wiggle dep)
* wasi-nn: use wasmtime::Trap instead of wiggle::Trap
there's no way the implementation of this func is actually
a good idea, it will panic the host process on any error,
but I'll ask @mtr to fix that
* wiggle test-helpers examples: fixes
* wasi-common cant cross compile to wasm32-unknown-emscripten anymore
this was originally for the WASI polyfill for web targets. Those days
are way behind us now.
* wasmtime wont compile for armv7-unknown-linux-gnueabihf either
sync test: show the dummy executor will trap (rather than panic) when a
future inside it pends.
async test: show that the executor is hooked up to a future that pends
for a trivial amount of time.
this adds tokio to the dev-dependencies of wiggle, it shouldn't end up
increasing the build burden for the project as a whole since its already
a dev-dependency.
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
async methods used by wiggle currently need to Not have the Send
constraint, so rather than make all use sites pass the argument
to the re-exported async_trait macro, define a new macro that
applies the argument.
* ctx parameter no longer accepted by wiggle::from_witx macro.
* optional async_ parameter specifies which functions are async.
* re-export async_trait::async_trait, so users don't have to take a dep.
This commit updates to the 0.9 version of the witx crate implemented in
WebAssembly/wasi#395. This new version drastically changes code
generation and how we interface with the crate. The intention is to
abstract the code generation aspects and allow code generators to
implement much more low-level instructions to enable more flexible APIs
in the future. Additionally a bunch of `*.witx` files were updated in
the WASI repository.
It's worth pointing out, however, that `wasi-common` does not change as
a result of this change. The shape of the APIs that we need to implement
are effectively the same and the only difference is that the shim
functions generated by wiggle are a bit different.
also, make noreturn functions always return a Trap
wasmtime-wiggle can trivially turn a wiggle::Trap into a wasmtime::Trap.
lucet will have to do the same.
Also add configuration to CI to fail doc generation if any links are
broken. Unfortunately we can't blanket deny all warnings in rustdoc
since some are unconditional warnings, but for now this is hopefully
good enough.
Closes#1947
The BorrowChecker methods get inlined as part of the GuestMemory trait.
The BorrowChecker implementation moves out to the engines. Unfortunately
this does mean having a copy in `test-helpers` along with another in
`wasmtime-wiggle`. The `wasmtime-wiggle` copy will move into `wasmtime`
itself in a subsequent PR.
https://github.com/bytecodealliance/wasmtime/issues/1917
* Implement interrupting wasm code, reimplement stack overflow
This commit is a relatively large change for wasmtime with two main
goals:
* Primarily this enables interrupting executing wasm code with a trap,
preventing infinite loops in wasm code. Note that resumption of the
wasm code is not a goal of this commit.
* Additionally this commit reimplements how we handle stack overflow to
ensure that host functions always have a reasonable amount of stack to
run on. This fixes an issue where we might longjmp out of a host
function, skipping destructors.
Lots of various odds and ends end up falling out in this commit once the
two goals above were implemented. The strategy for implementing this was
also lifted from Spidermonkey and existing functionality inside of
Cranelift. I've tried to write up thorough documentation of how this all
works in `crates/environ/src/cranelift.rs` where gnarly-ish bits are.
A brief summary of how this works is that each function and each loop
header now checks to see if they're interrupted. Interrupts and the
stack overflow check are actually folded into one now, where function
headers check to see if they've run out of stack and the sentinel value
used to indicate an interrupt, checked in loop headers, tricks functions
into thinking they're out of stack. An interrupt is basically just
writing a value to a location which is read by JIT code.
When interrupts are delivered and what triggers them has been left up to
embedders of the `wasmtime` crate. The `wasmtime::Store` type has a
method to acquire an `InterruptHandle`, where `InterruptHandle` is a
`Send` and `Sync` type which can travel to other threads (or perhaps
even a signal handler) to get notified from. It's intended that this
provides a good degree of flexibility when interrupting wasm code. Note
though that this does have a large caveat where interrupts don't work
when you're interrupting host code, so if you've got a host import
blocking for a long time an interrupt won't actually be received until
the wasm starts running again.
Some fallout included from this change is:
* Unix signal handlers are no longer registered with `SA_ONSTACK`.
Instead they run on the native stack the thread was already using.
This is possible since stack overflow isn't handled by hitting the
guard page, but rather it's explicitly checked for in wasm now. Native
stack overflow will continue to abort the process as usual.
* Unix sigaltstack management is now no longer necessary since we don't
use it any more.
* Windows no longer has any need to reset guard pages since we no longer
try to recover from faults on guard pages.
* On all targets probestack intrinsics are disabled since we use a
different mechanism for catching stack overflow.
* The C API has been updated with interrupts handles. An example has
also been added which shows off how to interrupt a module.
Closes#139Closes#860Closes#900
* Update comment about magical interrupt value
* Store stack limit as a global value, not a closure
* Run rustfmt
* Handle review comments
* Add a comment about SA_ONSTACK
* Use `usize` for type of `INTERRUPTED`
* Parse human-readable durations
* Bring back sigaltstack handling
Allows libstd to print out stack overflow on failure still.
* Add parsing and emission of stack limit-via-preamble
* Fix new example for new apis
* Fix host segfault test in release mode
* Fix new doc example
* Shuffle around the wiggle crates
This commit reorganizes the wiggle crates slightly by performing the
following transforms:
* The `crates/wiggle` crate, previously named `wiggle`, was moved to
`crates/wiggle/crates/macro` and is renamed to `wiggle-macro`.
* The `crates/wiggle/crates/runtime` crate, previously named
`wiggle-runtime`, was moved to `crates/wiggle` and is renamed to
`wiggle`.
* The new `wiggle` crate depends on `wiggle-macro` and reexports the macro.
The goal here is that consumers only deal with the `wiggle` crate
itself. No more crates depend on `wiggle-runtime` and all dependencies
are entirely on just the `wiggle` crate.
* Remove the `crates/wiggle/crates` directory
Move everything into `crates/wiggle` directly, like `wasi-common`
* Add wiggle-macro to test-all script
* Fixup a test
* wiggle: emit a metadata module containing witx document
* wiggle: put metadata module behind a wiggle_metadata feature
* wasi-common: add wiggle_metadata feature and optional witx dep
* refactor according to alex's advice
* wasi-common: make snapshots pub
* wasi-common: i do need a wiggle_metadata feature to be available
* Tweak features and such
* wiggle: fix tests by passing metadata flag to wiggle-runtime
* wiggle: need to move wiggle-runtime to a non-dev dependency
so that the feature resolves for external users of the crates
Co-authored-by: Alex Crichton <alex@alexcrichton.com>