Commit Graph

137 Commits

Author SHA1 Message Date
Alex Crichton
63a3bbbf5a Change VMMemoryDefinition::current_length to usize (#3134)
* Change VMMemoryDefinition::current_length to `usize`

This commit changes the definition of
`VMMemoryDefinition::current_length` to `usize` from its previous
definition of `u32`. This is a pretty impactful change because it also
changes the cranelift semantics of "dynamic" heaps where the bound
global value specifier must now match the pointer type for the platform
rather than the index type for the heap.

The motivation for this change is that the `current_length` field (or
bound for the heap) is intended to reflect the current size of the heap.
This is bound by `usize` on the host platform rather than `u32` or`
u64`. The previous choice of `u32` couldn't represent a 4GB memory
because we couldn't put a number representing 4GB into the
`current_length` field. By using `usize`, which reflects the host's
memory allocation, this should better reflect the size of the heap and
allows Wasmtime to support a full 4GB heap for a wasm program (instead
of 4GB minus one page).

This commit also updates the legalization of the `heap_addr` clif
instruction to appropriately cast the address to the platform's pointer
type, handling bounds checks along the way. The practical impact for
today's targets is that a `uextend` is happening sooner than it happened
before, but otherwise there is no intended impact of this change. In the
future when 64-bit memories are supported there will likely need to be
fancier logic which handles offsets a bit differently (especially in the
case of a 64-bit memory on a 32-bit host).

The clif `filetest` changes should show the differences in codegen, and
the Wasmtime changes are largely removing casts here and there.

Closes #3022

* Add tests for memory.size at maximum memory size

* Add a dfg helper method
2021-08-02 13:09:40 -05:00
Andrew Brown
766774e1f5 refactor: reorganize crate imports 2021-07-26 13:39:16 -07:00
Andrew Brown
6b86984c41 x64: avoid load-coalescing SIMD operations with non-aligned loads
Fixes #2943, though not as optimally as may be desired. With x64 SIMD
instructions, the memory operand must be aligned--this change adds that
check. There are cases, however, where we can do better--see #3106.
2021-07-26 13:39:16 -07:00
Nick Fitzgerald
4283d2116d cranelift: Move most debug-level logs to the trace level
Cranelift crates have historically been much more verbose with debug-level
logging than most other crates in the Rust ecosystem. We log things like how
many parameters a basic block has, the color of virtual registers during
regalloc, etc. Even for Cranelift hackers, these things are largely only useful
when hacking specifically on Cranelift and looking at a particular test case,
not even when using some Cranelift embedding (such as Wasmtime).

Most of the time, when people want logging for their Rust programs, they do
something like:

    RUST_LOG=debug cargo run

This means that they get all that mostly not useful debug logging out of
Cranelift. So they might want to disable logging for Cranelift, or change it to
a higher log level:

    RUST_LOG=debug,cranelift=info cargo run

The problem is that this is already more annoying to type that `RUST_LOG=debug`,
and that Cranelift isn't one single crate, so you actually have to play
whack-a-mole with naming all the Cranelift crates off the top of your head,
something more like this:

    RUST_LOG=debug,cranelift=info,cranelift_codegen=info,cranelift_wasm=info,...

Therefore, we're changing most of the `debug!` logs into `trace!` logs: anything
that is very Cranelift-internal, unlikely to be useful/meaningful to the
"average" Cranelift embedder, or prints a message for each instruction visited
during a pass. On the other hand, things that just report a one line statistic
for a whole pass, for example, are left as `debug!`. The more verbose the log
messages are, the higher the bar they must clear to be `debug!` rather than
`trace!`.
2021-07-26 11:50:16 -07:00
StackDoubleFlow
9637bc5a09 Fix cranelift Module and ObjectModule docs links (#2852) 2021-04-21 06:29:02 -07:00
Chris Fallin
48d542d67c Fix bad jumptable block ref when DCE removes a block.
When a block is unreachable, the `unreachable_code` pass will remove it,
which is perfectly sensible. Jump tables factor into unreachability in
an expected way: even if a block is listed in a jump table, the block
might be unreachable if the jump table itself is unused (or used in an
unreachable block). Unfortunately, the verifier still expects all
block refs in all jump tables to be valid, even after DCE, which will
not always be the case.

This makes a simple change to the pass: after removing blocks, it scans
jump tables. Any jump table that refers to an unreachable block must
itself be unused, and so we just clear its entries. We do not bother
removing it (and renumbering all later jumptables), and we do not bother
computing full unused-ness of all jumptables, as that would be more
expensive; it's sufficient to clear out the ones that refer to
unreachable blocks, which are a subset of all unused jumptables.

Fixes #2670.
2021-02-23 15:01:01 -08:00
Chris Fallin
c07ec4c525 Merge pull request #2653 from bjorn3/more_atomic_ops
More atomic ops
2021-02-18 08:34:58 -08:00
bjorn3
ff22842da5 More atomic ops 2021-02-18 14:16:15 +01:00
bjorn3
720da20588 Describe serialization format 2021-02-18 11:27:51 +01:00
bjorn3
a0c2276ee7 Add a version marker
This prevents deserializing a function with a different Cranelift version
2021-02-18 11:27:51 +01:00
bjorn3
2fc964ea35 Add serde serialization support for the full clif ir 2021-02-18 11:27:02 +01:00
Chris Fallin
c84d6be6f4 Detailed debug-info (DWARF) support in new backends (initially x64).
This PR propagates "value labels" all the way from CLIF to DWARF
metadata on the emitted machine code. The key idea is as follows:

- Translate value-label metadata on the input into "value_label"
  pseudo-instructions when lowering into VCode. These
  pseudo-instructions take a register as input, denote a value label,
  and semantically are like a "move into value label" -- i.e., they
  update the current value (as seen by debugging tools) of the given
  local. These pseudo-instructions emit no machine code.

- Perform a dataflow analysis *at the machine-code level*, tracking
  value-labels that propagate into registers and into [SP+constant]
  stack storage. This is a forward dataflow fixpoint analysis where each
  storage location can contain a *set* of value labels, and each value
  label can reside in a *set* of storage locations. (Meet function is
  pairwise intersection by storage location.)

  This analysis traces value labels symbolically through loads and
  stores and reg-to-reg moves, so it will naturally handle spills and
  reloads without knowing anything special about them.

- When this analysis converges, we have, at each machine-code offset, a
  mapping from value labels to some number of storage locations; for
  each offset for each label, we choose the best location (prefer
  registers). Note that we can choose any location, as the symbolic
  dataflow analysis is sound and guarantees that the value at the
  value_label instruction propagates to all of the named locations.

- Then we can convert this mapping into a format that the DWARF
  generation code (wasmtime's debug crate) can use.

This PR also adds the new-backend variant to the gdb tests on CI.
2021-01-21 15:59:49 -08:00
Chris Fallin
743529b4eb Merge pull request #2492 from uweigand/endian-memory-v5
Support explicit endianness in Cranelift IR MemFlags
2020-12-14 13:59:08 -08:00
Ulrich Weigand
467a1af83a Support explicit endianness in Cranelift IR MemFlags
WebAssembly memory operations are by definition little-endian even on
big-endian target platforms.  However, other memory accesses will require
native target endianness (e.g. to access parts of the VMContext that is
also accessed by VM native code).  This means on big-endian targets,
the code generator will have to handle both little- and big-endian
memory accesses.  However, there is currently no way to encode that
distinction into the Cranelift IR that describes memory accesses.

This patch provides such a way by adding an (optional) explicit
endianness marker to an instance of MemFlags.  Since each Cranelift IR
instruction that describes memory accesses already has an instance of
MemFlags attached, this can now be used to provide endianness
information.

Note that by default, memory accesses will continue to use the native
target ISA endianness.  To override this to specify an explicit
endianness, a MemFlags value that was built using the set_endianness
routine must be used.  This patch does so for accesses that implement
WebAssembly memory operations.

This patch addresses issue #2124.
2020-12-14 20:15:37 +01:00
Y-Nak
855a6374dd Fix missing modification of jump table in licm 2020-12-09 11:13:33 +09:00
Pat Hickey
0f1dc9a735 Merge pull request #2403 from bjorn3/simplejit_hot_swapping
SimpleJIT hot code swapping
2020-12-03 13:36:32 -08:00
bjorn3
eaa2c5b3c2 Implement GOT relocations in SimpleJIT 2020-11-12 15:06:52 +01:00
Chris Fallin
a2bbb198de Do value-extensions at ABI boundaries only when ABI requires it.
There has been some confusion over the meaning of the "sign-extend"
(`sext`) and "zero-extend" (`uext`) attributes on parameters and return
values in signatures. According to the three implemented backends, these
attributes indicate that a value narrower than a full register should
always be extended in the way specified. However, they are much more
useful if they mean "extend in this way if the ABI requires extending":
only the ABI backend knows whether or not a particular ABI (e.g., x64
SysV vs. x64 Baldrdash) requires extensions, while only the frontend
(CLIF generator) knows whether or not a value is signed, so the two have
to work in concert.

This is the result of some very helpful discussion in #2354 (thanks to
@uweigand for raising the issue and @bjorn3 for helping to reason about
it).

This change respects the extension attributes in the above way, rather
than unconditionally extending, to avoid potential performance
degradation as we introduce more extension attributes on signatures.
2020-11-05 11:54:35 -08:00
Andrew Brown
6d50099816 Rewrite interpreter generically (#2323)
* Rewrite interpreter generically

This change re-implements the Cranelift interpreter to use generic values; this makes it possible to do abstract interpretation of Cranelift instructions. In doing so, the interpretation state is extracted from the `Interpreter` structure and is accessed via a `State` trait; this makes it possible to not only more clearly observe the interpreter's state but also to interpret using a dummy state (e.g. `ImmutableRegisterState`). This addition made it possible to implement more of the Cranelift instructions (~70%, ignoring the x86-specific instructions).

* Replace macros with closures
2020-11-02 12:28:07 -08:00
Leonardo Yvens
bde9555793 Add Trap::trap_code (#2309)
* add Trap::trap_code

* Add non-exhaustive wasmtime::TrapCode

* wasmtime: Better document TrapCode

* move and refactor test
2020-10-27 16:30:45 -05:00
Yury Delendik
3c68845813 Cranelift: refactoring of unwind info (#2289)
* factor common code

* move fde/unwind emit to more abstract level

* code_len -> function_size

* speedup block scanning

* better function_size calciulation

* Rename UnwindCode enums
2020-10-15 08:34:50 -05:00
Andrew Brown
3778fa025c Switch DataValue to use Ieee32/Ieee64
As discussed in #2251, in order to be very confident that NaN signaling bits are correctly handled by the compiler, this switches `DataValue` to use Cranelift's `Ieee32` and `Ieee64` structures. This makes it a bit more inconvenient to interpreter Cranelift FP operations but this should change to something like `rustc_apfloat` in the future.
2020-10-07 12:17:17 -07:00
Andrew Brown
ce44719e1f refactor: change LowerCtx::get_immediate to return a DataValue
This change abstracts away (from the perspective of the new backend) how immediate values are stored in InstructionData. It gathers large immediates from necessary places (e.g. constant pool) and delegates to `InstructionData::imm_value` for the rest. This refactor only touches original users of `LowerCtx::get_immediate` but a future change could do the same for any place the new backend is accessing InstructionData directly to retrieve immediates.
2020-10-07 12:17:17 -07:00
Andrew Brown
3a2025fdc7 Add InstructionData::imm_value() 2020-10-07 12:17:17 -07:00
Chris Fallin
835db11bea Support for SpiderMonkey's "Wasm ABI 2020".
As part of a Wasm JIT update, SpiderMonkey is changing its internal
WebAssembly function ABI. The new ABI's frame format includes "caller
TLS" and "callee TLS" slots. The details of where these come from are
not important; from Cranelift's point of view, the only relevant
requirement is that we have two on-stack args that are always present
(offsetting other on-stack args), and that we define special argument
purposes so that we can supply values for these slots.

Note that this adds a *new* ABI (a variant of the Baldrdash ABI) because
we do not want to tightly couple the landing of this PR to the landing
of the changes in SpiderMonkey; it's better if both the old and new
behavior remain available in Cranelift, so SpiderMonkey can continue to
vendor Cranelift even if it does not land (or backs out) the ABI change.

Furthermore, note that this needs to be a Cranelift-level change (i.e.
cannot be done purely from the translator environment implementation)
because the special TLS arguments must always go on the stack, which
would not otherwise happen with the usual argument-placement logic; and
there is no primitive to push a value directly in CLIF code (the notion
of a stack frame is a lower-level concept).
2020-09-30 14:55:56 -07:00
Benjamin Bouvier
7a833f442a machinst: common up some instruction data helpers; 2020-09-09 18:03:59 +02:00
Julian Seward
25e31739a6 Implement Wasm Atomics for Cranelift/newBE/aarch64.
The implementation is pretty straightforward.  Wasm atomic instructions fall
into 5 groups

* atomic read-modify-write
* atomic compare-and-swap
* atomic loads
* atomic stores
* fences

and the implementation mirrors that structure, at both the CLIF and AArch64
levels.

At the CLIF level, there are five new instructions, one for each group.  Some
comments about these:

* for those that take addresses (all except fences), the address is contained
  entirely in a single `Value`; there is no offset field as there is with
  normal loads and stores.  Wasm atomics require alignment checks, and
  removing the offset makes implementation of those checks a bit simpler.

* atomic loads and stores get their own instructions, rather than reusing the
  existing load and store instructions, for two reasons:

  - per above comment, makes alignment checking simpler

  - reuse of existing loads and stores would require extension of `MemFlags`
    to indicate atomicity, which sounds semantically unclean.  For example,
    then *any* instruction carrying `MemFlags` could be marked as atomic, even
    in cases where it is meaningless or ambiguous.

* I tried to specify, in comments, the behaviour of these instructions as
  tightly as I could.  Unfortunately there is no way (per my limited CLIF
  knowledge) to enforce the constraint that they may only be used on I8, I16,
  I32 and I64 types, and in particular not on floating point or vector types.

The translation from Wasm to CLIF, in `code_translator.rs` is unremarkable.

At the AArch64 level, there are also five new instructions, one for each
group.  All of them except `::Fence` contain multiple real machine
instructions.  Atomic r-m-w and atomic c-a-s are emitted as the usual
load-linked store-conditional loops, guarded at both ends by memory fences.
Atomic loads and stores are emitted as a load preceded by a fence, and a store
followed by a fence, respectively.  The amount of fencing may be overkill, but
it reflects exactly what the SM Wasm baseline compiler for AArch64 does.

One reason to implement r-m-w and c-a-s as a single insn which is expanded
only at emission time is that we must be very careful what instructions we
allow in between the load-linked and store-conditional.  In particular, we
cannot allow *any* extra memory transactions in there, since -- particularly
on low-end hardware -- that might cause the transaction to fail, hence
deadlocking the generated code.  That implies that we can't present the LL/SC
loop to the register allocator as its constituent instructions, since it might
insert spills anywhere.  Hence we must present it as a single indivisible
unit, as we do here.  It also has the benefit of reducing the total amount of
work the RA has to do.

The only other notable feature of the r-m-w and c-a-s translations into
AArch64 code, is that they both need a scratch register internally.  Rather
than faking one up by claiming, in `get_regs` that it modifies an extra
scratch register, and having to have a dummy initialisation of it, these new
instructions (`::LLSC` and `::CAS`) simply use fixed registers in the range
x24-x28.  We rely on the RA's ability to coalesce V<-->R copies to make the
cost of the resulting extra copies zero or almost zero.  x24-x28 are chosen so
as to be call-clobbered, hence their use is less likely to interfere with long
live ranges that span calls.

One subtlety regarding the use of completely fixed input and output registers
is that we must be careful how the surrounding copy from/to of the arg/result
registers is done.  In particular, it is not safe to simply emit copies in
some arbitrary order if one of the arg registers is a real reg.  For that
reason, the arguments are first moved into virtual regs if they are not
already there, using a new method `<LowerCtx for Lower>::ensure_in_vreg`.
Again, we rely on coalescing to turn them into no-ops in the common case.

There is also a ridealong fix for the AArch64 lowering case for
`Opcode::Trapif | Opcode::Trapff`, which removes a bug in which two trap insns
in a row were generated.

In the patch as submitted there are 6 "FIXME JRS" comments, which mark things
which I believe to be correct, but for which I would appreciate a second
opinion.  Unless otherwise directed, I will remove them for the final commit
but leave the associated code/comments unchanged.
2020-08-04 09:35:50 +02:00
Alex Crichton
65eaca35dd Refactor where results of compilation are stored (#2086)
* Refactor where results of compilation are stored

This commit refactors the internals of compilation in Wasmtime to change
where results of individual function compilation are stored. Previously
compilation resulted in many maps being returned, and compilation
results generally held all these maps together. This commit instead
switches this to have all metadata stored in a `CompiledFunction`
instead of having a separate map for each item that can be stored.

The motivation for this is primarily to help out with future
module-linking-related PRs. What exactly "module level" is depends on
how we interpret modules and how many modules are in play, so it's a bit
easier for operations in wasmtime to work at the function level where
possible. This means that we don't have to pass around multiple
different maps and a function index, but instead just one map or just
one entry representing a compiled function.

Additionally this change updates where the parallelism of compilation
happens, pushing it into `wasmtime-jit` instead of `wasmtime-environ`.
This is another goal where `wasmtime-jit` will have more knowledge about
module-level pieces with module linking in play. User-facing-wise this
should be the same in terms of parallel compilation, though.

The ultimate goal of this refactoring is to make it easier for the
results of compilation to actually be a set of wasm modules. This means
we won't be able to have a map-per-metadata where the primary key is the
function index, because there will be many modules within one "object
file".

* Don't clear out fields, just don't store them

Persist a smaller set of fields in `CompilationArtifacts` instead of
trying to clear fields out and dynamically not accessing them.
2020-08-03 12:20:51 -05:00
Nick Fitzgerald
ee5982fd16 peepmatic: Be generic over the operator type
This lets us avoid the cost of `cranelift_codegen::ir::Opcode` to
`peepmatic_runtime::Operator` conversion overhead, and paves the way for
allowing Peepmatic to support non-clif optimizations (e.g. vcode optimizations).

Rather than defining our own `peepmatic::Operator` type like we used to, now the
whole `peepmatic` crate is effectively generic over a `TOperator` type
parameter. For the Cranelift integration, we use `cranelift_codegen::ir::Opcode`
as the concrete type for our `TOperator` type parameter. For testing, we also
define a `TestOperator` type, so that we can test Peepmatic code without
building all of Cranelift, and we can keep them somewhat isolated from each
other.

The methods that `peepmatic::Operator` had are now translated into trait bounds
on the `TOperator` type. These traits need to be shared between all of
`peepmatic`, `peepmatic-runtime`, and `cranelift-codegen`'s Peepmatic
integration. Therefore, these new traits live in a new crate:
`peepmatic-traits`. This crate acts as a header file of sorts for shared
trait/type/macro definitions.

Additionally, the `peepmatic-runtime` crate no longer depends on the
`peepmatic-macro` procedural macro crate, which should lead to faster build
times for Cranelift when it is using pre-built peephole optimizers.
2020-07-17 16:16:49 -07:00
bjorn3
7b7b1f4997 Rename sarg__ to sarg_t 2020-07-17 12:03:17 +02:00
bjorn3
4971d9ee80 Merge {make_incoming,get_outgoing}_{,struct_}arg 2020-07-17 12:03:17 +02:00
bjorn3
0d4fa6d32a Fix review comments 2020-07-17 12:03:17 +02:00
bjorn3
4431ac1108 Implement SystemV struct argument passing 2020-07-17 12:03:17 +02:00
Andrew Brown
0e5e8a62c8 Add DerivedFunction for doubling lane widths and halving the number of lanes (i.e. merging)
Certain operations (e.g. widening) will have operands with types like `NxM` but will return results with types like `(N*2)x(M/2)` (double the lane width, halve the number of lanes; maintain the same number of vector bits). This is equivalent to applying two `DerivedFunction`s to the type: `DerivedFunction::DoubleWidth` then `DerivedFunction::HalfVector`. Since there is no easy way to apply multiple `DerivedFunction`s (e.g. most of the logic is one-level deep, 1d5a678124/cranelift/codegen/meta/src/gen_inst.rs (L618-L621)), I added `DerivedFunction::MergeLanes` to do the necessary type conversion.
2020-07-15 11:32:08 -07:00
Alex Crichton
85ffc8f595 Switch CI back to nightly channel (#2014)
* Switch CI back to nightly channel

I think all upstream issues are now fixed so we should be good to switch
back to nightly from our previously pinned version.

* Fix doc warnings
2020-07-13 18:40:47 -05:00
Yury Delendik
b2551bb4d0 Make wasmtime_environ::Module serializable (#2005)
* Define WasmType/WasmFuncType in the Cranelift
* Make `Module` serializable
2020-07-10 15:56:43 -05:00
Nick Fitzgerald
8c5f59c0cf wasmtime: Implement table.get and table.set
These instructions have fast, inline JIT paths for the common cases, and only
call out to host VM functions for the slow paths. This required some changes to
`cranelift-wasm`'s `FuncEnvironment`: instead of taking a `FuncCursor` to insert
an instruction sequence within the current basic block,
`FuncEnvironment::translate_table_{get,set}` now take a `&mut FunctionBuilder`
so that they can create whole new basic blocks. This is necessary for
implementing GC read/write barriers that involve branching (e.g. checking for
null, or whether a store buffer is at capacity).

Furthermore, it required that the `load`, `load_complex`, and `store`
instructions handle loading and storing through an `r{32,64}` rather than just
`i{32,64}` addresses. This involved making `r{32,64}` types acceptable
instantiations of the `iAddr` type variable, plus a few new instruction
encodings.

Part of #929
2020-06-30 12:00:57 -07:00
Alex Crichton
0acd2072c2 Fix doc warnings and link failures (#1948)
Also add configuration to CI to fail doc generation if any links are
broken. Unfortunately we can't blanket deny all warnings in rustdoc
since some are unconditional warnings, but for now this is hopefully
good enough.

Closes #1947
2020-06-30 13:01:49 -05:00
Benjamin Bouvier
238ae3bf21 cranelift: tweak condition in safepoint detection to check for resumable traps; 2020-06-15 12:04:28 +02:00
Chris Fallin
cdbe76a1d4 Remove uses of matches!() macro, incompatible with Firefox build.
When we vendor Cranelift into Firefox, we need to be able to build with
the Firefox CI setup (unless we carry patches on top of upstream).
Unfortunately, the Firefox CI currently appears to build with a slightly
older version of Rust: I can't work out which version exactly, but one
without stable support for `matches!()`.

A recent attempt to version-bump Cranelift failed with build errors at
the two locations in this patch:

https://treeherder.mozilla.org/logviewer.html#/jobs?job_id=305994046&repo=autoland&lineNumber=24829

I also see a bunch of uses of `matches!()` in Peepmatic, but those
crates are not built by Firefox, so we can leave them be for now, I
think.
2020-06-11 15:11:10 -07:00
whitequark
bc555468a7 cranelift: add i64.{ishl,ushr,ashr} libcalls.
These libcalls are useful for 32-bit platforms.

On x86_32 in particular, commit 4ec16fa0 added support for legalizing
64-bit shifts through SIMD operations. However, that legalization
requires SIMD to be enabled and SSE 4.1 to be supported, which is not
acceptable as a hard requirement.
2020-06-05 12:13:49 -07:00
Nick Fitzgerald
7c68a10ed6 Merge pull request #1670 from teapotd/win64-pass-by-ref
Implement passing arguments by ref for win64 ABI
2020-06-01 11:13:30 -07:00
Andrew Brown
0dd77d36f8 Rename BinaryImm format to BinaryImm64 2020-05-29 19:56:27 -07:00
teapotd
759cc3e751 Implement passing arguments by ref for win64 ABI 2020-05-29 20:12:41 +02:00
whitequark
b2e8ed4dc9 cranelift: add i64.[us]{div,rem} libcalls.
These libcalls are useful for 32-bit platforms.
2020-05-22 11:41:56 +00:00
Nick Fitzgerald
fb7a690efc Merge pull request #1687 from fitzgen/sign-extend-immediates
cranelift: Sign extend `Imm64` immediates
2020-05-14 10:09:53 -07:00
Nick Fitzgerald
090d1c2d32 cranelift: Port most of simple_preopt.rs over to the peepmatic DSL
This ports all of the identity, no-op, simplification, and canonicalization
related optimizations over from being hand-coded to the `peepmatic` DSL. This
does not handle the branch-to-branch optimizations or most of the
divide-by-constant optimizations.
2020-05-14 07:52:23 -07:00
Dan Gohman
fb0b9e3ae6 Change proc_exit to unwind the stack rather than exiting the host process. (#1646)
* Remove Cranelift's OutOfBounds trap, which is no longer used.

* Change proc_exit to unwind instead of exit the host process.

This implements the semantics in https://github.com/WebAssembly/WASI/pull/235.

Fixes #783.
Fixes #993.

* Fix exit-status tests on Windows.

* Revert the wiggle changes and re-introduce the wasi-common implementations.

* Move `wasi_proc_exit` into the wasmtime-wasi crate.

* Revert the spec_testsuite change.

* Remove the old proc_exit implementations.

* Make `TrapReason` an implementation detail.

* Allow exit status 2 on Windows too.

* Fix a documentation link.

* Really fix a documentation link.
2020-05-13 15:59:43 -07:00
Nick Fitzgerald
9b867b09c7 cranelift: Sign extend Imm64 immediates
When an instruction has an `Imm64` immediate, but operates on values of a
narrower width, we need to sign extend the value.

Fixes #1095
2020-05-12 15:44:48 -07:00
Chris Fallin
e39b4aba1c Fix long-range (non-colocated) aarch64 calls to not use Arm64Call reloc, and fix simplejit to use it.
Previously, every call was lowered on AArch64 to a `call` instruction, which
takes a signed 26-bit PC-relative offset. Including the 2-bit left shift, this
gives a range of +/- 128 MB. Longer-distance offsets would cause an impossible
relocation record to be emitted (or rather, a record that a more sophisticated
linker would fix up by inserting a shim/veneer).

This commit adds a notion of "relocation distance" in the MachInst backends,
and provides this information for every call target and symbol reference. The
intent is that backends on architectures like AArch64, where there are different
offset sizes / addressing strategies to choose from, can either emit a regular
call or a load-64-bit-constant / call-indirect sequence, as necessary. This
avoids the need to implement complex linking behavior.

The MachInst driver code provides this information based on the "colocated" bit
in the CLIF symbol references, which appears to have been designed for this
purpose, or at least a similar one. Combined with the `use_colocated_libcalls`
setting, this allows client code to ensure that library calls can link to
library code at any location in the address space.

Separately, the `simplejit` example did not handle `Arm64Call`; rather than doing
so, it appears all that is necessary to get its tests to pass is to set the
`use_colocated_libcalls` flag to false, to make use of the above change. This
fixes the `libcall_function` unit-test in this crate.
2020-05-05 09:55:12 -07:00