Commit Graph

3 Commits

Author SHA1 Message Date
Alex Crichton
650979ae40 Implement strings in adapter modules (#4623)
* Implement strings in adapter modules

This commit is a hefty addition to Wasmtime's support for the component
model. This implements the final remaining type (in the current type
hierarchy) unimplemented in adapter module trampolines: strings. Strings
are the most complicated type to implement in adapter trampolines
because they are highly structured chunks of data in memory (according
to specific encodings). Additionally each lift/lower operation can
choose its own encoding for strings meaning that Wasmtime, the host, may
have to convert between any pairwise ordering of string encodings.

The `CanonicalABI.md` in the component-model repo in general specifies
all the fiddly bits of string encoding so there's not a ton of wiggle
room for Wasmtime to get creative. This PR largely "just" implements
that. The high-level architecture of this implementation is:

* Fused adapters are first identified to determine src/dst string
  encodings. This statically fixes what transcoding operation is being
  performed.

* The generated adapter will be responsible for managing calls to
  `realloc` and performing bounds checks. The adapter itself does not
  perform memory copies or validation of string contents, however.
  Instead each transcoding operation is modeled as an imported function
  into the adapter module.  This means that the adapter module
  dynamically, during compile time, determines what string transcoders
  are needed. Note that an imported transcoder is not only parameterized
  over the transcoding operation but additionally which memory is the
  source and which is the destination.

* The imported core wasm functions are modeled as a new
  `CoreDef::Transcoder` structure. These transcoders end up being small
  Cranelift-compiled trampolines. The Cranelift-compiled trampoline will
  load the actual base pointer of memory and add it to the relative
  pointers passed as function arguments. This trampoline then calls a
  transcoder "libcall" which enters Rust-defined functions for actual
  transcoding operations.

* Each possible transcoding operation is implemented in Rust with a
  unique name and a unique signature depending on the needs of the
  transcoder. I've tried to document inline what each transcoder does.

This means that the `Module::translate_string` in adapter modules is by
far the largest translation method. The main reason for this is due to
the management around calling the imported transcoder functions in the
face of validating string pointer/lengths and performing the dance of
`realloc`-vs-transcode at the right time. I've tried to ensure that each
individual case in transcoding is documented well enough to understand
what's going on as well.

Additionally in this PR is a full implementation in the host for the
`latin1+utf16` encoding which means that both lifting and lowering host
strings now works with this encoding.

Currently the implementation of each transcoder function is likely far
from optimal. Where possible I've leaned on the standard library itself
and for latin1-related things I'm leaning on the `encoding_rs` crate. I
initially tried to implement everything with `encoding_rs` but was
unable to uniformly do so easily. For now I settled on trying to get a
known-correct (even in the face of endianness) implementation for all of
these transcoders. If an when performance becomes an issue it should be
possible to implement more optimized versions of each of these
transcoding operations.

Testing this commit has been somewhat difficult and my general plan,
like with the `(list T)` type, is to rely heavily on fuzzing to cover
the various cases here. In this PR though I've added a simple test that
pushes some statically known strings through all the pairs of encodings
between source and destination. I've attempted to pick "interesting"
strings that one way or another stress the various paths in each
transcoding operation to ideally get full branch coverage there.
Additionally a suite of "negative" tests have also been added to ensure
that validity of encoding is actually checked.

* Fix a temporarily commented out case

* Fix wasmtime-runtime tests

* Update deny.toml configuration

* Add `BSD-3-Clause` for the `encoding_rs` crate
* Remove some unused licenses

* Add an exemption for `encoding_rs` for now

* Split up the `translate_string` method

Move out all the closures and package up captured state into smaller
lists of arguments.

* Test out-of-bounds for zero-length strings
2022-08-08 16:01:57 +00:00
Alex Crichton
1ce9e8aa5f Fix an issue in adapter module partitioning (#4622)
When an adapter module depends on a particular core wasm instance this
means that it actually depends on not only that instance but all prior
core wasm instances as well. This is because core wasm instances must be
instantiated in the specified order within a component and that cannot
change depending on the dataflow between adapters. This commit fixes a
possible panic from linearizing the component dfg where an adapter
module tried to depend on an instance that hadn't been instantiated yet
because the ordering dependency between core wasm instances hadn't been
modeled.
2022-08-05 01:32:39 +00:00
Alex Crichton
b4d7ab36f9 Add a dataflow-based representation of components (#4597)
* Add a dataflow-based representation of components

This commit updates the inlining phase of compiling a component to
creating a dataflow-based representation of a component instead of
creating a final `Component` with a linear list of initializers. This
dataflow graph is then linearized in a final step to create the actual
final `Component`.

The motivation for this commit stems primarily from my work implementing
strings in fused adapters. In doing this my plan is to defer most
low-level transcoding to the host itself rather than implementing that
in the core wasm adapter modules. This means that small
cranelift-generated trampolines will be used for adapter modules to call
which then call "transcoding libcalls". The cranelift-generated
trampolines will get raw pointers into linear memory and pass those to
the libcall which core wasm doesn't have access to when passing
arguments to an import.

Implementing this with the previous representation of a `Component` was
becoming too tricky to bear. The initialization of a transcoder needed
to happen at just the right time: before the adapter module which needed
it was instantiated but after the linear memories referenced had been
extracted into the `VMComponentContext`. The difficulty here is further
compounded by the current adapter module injection pass already being
quite complicated. Adapter modules are already renumbering the index
space of runtime instances and shuffling items around in the
`GlobalInitializer` list. Perhaps the worst part of this was that
memories could already be referenced by host function imports or exports
to the host, and if adapters referenced the same memory it shouldn't be
referenced twice in the component. This meant that `ExtractMemory`
initializers ideally needed to be shuffled around in the initializer
list to happen as early as possible instead of wherever they happened to
show up during translation.

Overall I did my best to implement the transcoders but everything always
came up short. I have decided to throw my hands up in the air and try a
completely different approach to this, namely the dataflow-based
representation in this commit. This makes it much easier to edit the
component after initial translation for injection of adapters, injection
of transcoders, adding dependencies on possibly-already-existing items,
etc. The adapter module partitioning pass in this commit was greatly
simplified to something which I believe is functionally equivalent but
is probably an order of magnitude easier to understand.

The biggest downside of this representation I believe is having a
duplicate representation of a component. The `component::info` was
largely duplicated into the `component::dfg` module in this commit.
Personally though I think this is a more appropriate tradeoff than
before because it's very easy to reason about "convert representation A
to B" code whereas it was very difficult to reason about shuffling
around `GlobalInitializer` items in optimal fashions. This may also have
a cost at compile-time in terms of shuffling data around, but my hope is
that we have lots of other low-hanging fruit to optimize if it ever
comes to that which allows keeping this easier-to-understand
representation.

Finally, to reiterate, the final representation of components is not
changed by this PR. To the runtime internals everything is still the
same.

* Fix compile of factc
2022-08-04 15:42:06 -05:00