Commit Graph

4 Commits

Author SHA1 Message Date
Jamey Sharp
dd81e5a64f Don't let fuzz targets import arbitrary directly (#4806)
The version of the `arbitrary` crate used in fuzz targets needs to be
the same as the version used in `libfuzzer-sys`. That's why the latter
crate re-exports the former.

But we need to make sure to consistently use the re-exported version.
That's most easily done if that's the only version we have available.
However, `fuzz/Cargo.toml` declared a direct dependency on `arbitrary`,
making it available for import, and leading to that version being used
in a couple places.

There were two copies of `arbitrary` built before, even though they were
the same version: one with the `derive` feature turned on, through the
direct dependency, and one with it turned off when imported through
`libfuzzer-sys`. So I haven't specifically tested this but fuzzer builds
might be slightly faster now.

I have not removed the build-dep on `arbitrary`, because `build.rs` is
not invoked by libFuzzer and so it doesn't matter what version of
`arbitrary` it uses.

Our other crates, like `cranelift-fuzzgen` and `wasmtime-fuzzing`, can
still accidentally use a different version of `arbitrary` than the fuzz
targets which rely on them. This commit only fixes the direct cases
within `fuzz/**`.
2022-08-29 23:06:41 +00:00
Alex Crichton
57dca934ad Upgrade wasm-tools crates, namely the component model (#4715)
* Upgrade wasm-tools crates, namely the component model

This commit pulls in the latest versions of all of the `wasm-tools`
family of crates. There were two major changes that happened in
`wasm-tools` in the meantime:

* bytecodealliance/wasm-tools#697 - this commit introduced a new API for
  more efficiently reading binary operators from a wasm binary. The old
  `Operator`-based reading was left in place, however, and continues to
  be what Wasmtime uses. I hope to update Wasmtime in a future PR to use
  this new API, but for now the biggest change is...

* bytecodealliance/wasm-tools#703 - this commit was a major update to
  the component model AST. This commit almost entirely deals with the
  fallout of this change.

The changes made to the component model were:

1. The `unit` type no longer exists. This was generally a simple change
   where the `Unit` case in a few different locations were all removed.
2. The `expected` type was renamed to `result`. This similarly was
   relatively lightweight and mostly just a renaming on the surface. I
   took this opportunity to rename `val::Result` to `val::ResultVal` and
   `types::Result` to `types::ResultType` to avoid clashing with the
   standard library types. The `Option`-based types were handled with
   this as well.
3. The payload type of `variant` and `result` types are now optional.
   This affected many locations that calculate flat type
   representations, ABI information, etc. The `#[derive(ComponentType)]`
   macro now specifically handles Rust-defined `enum` types which have
   no payload to the equivalent in the component model.
4. Functions can now return multiple parameters. This changed the
   signature of invoking component functions because the return value is
   now bound by `ComponentNamedList` (renamed from `ComponentParams`).
   This had a large effect in the tests, fuzz test case generation, etc.
5. Function types with 2-or-more parameters/results must uniquely name
   all parameters/results. This mostly affected the text format used
   throughout the tests.

I haven't added specifically new tests for multi-return but I changed a
number of tests to use it. Additionally I've updated the fuzzers to all
exercise multi-return as well so I think we should get some good
coverage with that.

* Update version numbers

* Use crates.io
2022-08-17 16:17:34 +00:00
Alex Crichton
866ec46613 Implement roundtrip fuzzing of component adapters (#4640)
* Improve the `component_api` fuzzer on a few dimensions

* Update the generated component to use an adapter module. This involves
  two core wasm instances communicating with each other to test that
  data flows through everything correctly. The intention here is to fuzz
  the fused adapter compiler. String encoding options have been plumbed
  here to exercise differences in string encodings.

* Use `Cow<'static, ...>` and `static` declarations for each static test
  case to try to cut down on rustc codegen time.

* Add `Copy` to derivation of fuzzed enums to make `derive(Clone)`
  smaller.

* Use `Store<Box<dyn Any>>` to try to cut down on codegen by
  monomorphizing fewer `Store<T>` implementation.

* Add debug logging to print out what's flowing in and what's flowing
  out for debugging failures.

* Improve `Debug` representation of dynamic value types to more closely
  match their Rust counterparts.

* Fix a variant issue with adapter trampolines

Previously the offset of the payload was calculated as the discriminant
aligned up to the alignment of a singular case, but instead this needs
to be aligned up to the alignment of all cases to ensure all cases start
at the same location.

* Fix a copy/paste error when copying masked integers

A 32-bit load was actually doing a 16-bit load by accident since it was
copied from the 16-bit load-and-mask case.

* Fix f32/i64 conversions in adapter modules

The adapter previously erroneously converted the f32 to f64 and then to
i64, where instead it should go from f32 to i32 to i64.

* Fix zero-sized flags in adapter modules

This commit corrects the size calculation for zero-sized flags in
adapter modules.

cc #4592

* Fix a variant size calculation bug in adapters

This fixes the same issue found with variants during normal host-side
fuzzing earlier where the size of a variant needs to align up the
summation of the discriminant and the maximum case size.

* Implement memory growth in libc bump realloc

Some fuzz-generated test cases are copying lists large enough to exceed
one page of memory so bake in a `memory.grow` to the bump allocator as
well.

* Avoid adapters of exponential size

This commit is an attempt to avoid adapters being exponentially sized
with respect to the type hierarchy of the input. Previously all
adaptation was done inline within each adapter which meant that if
something was structured as `tuple<T, T, T, T, ...>` the translation of
`T` would be inlined N times. For very deeply nested types this can
quickly create an exponentially sized adapter with types of the form:

    (type $t0 (list u8))
    (type $t1 (tuple $t0 $t0))
    (type $t2 (tuple $t1 $t1))
    (type $t3 (tuple $t2 $t2))
    ;; ...

where the translation of `t4` has 8 different copies of translating
`t0`.

This commit changes the translation of types through memory to almost
always go through a helper function. The hope here is that it doesn't
lose too much performance because types already reside in memory.

This can still lead to exponentially sized adapter modules to a lesser
degree where if the translation all happens on the "stack", e.g. via
`variant`s and their flat representation then many copies of one
translation could still be made. For now this commit at least gets the
problem under control for fuzzing where fuzzing doesn't trivially find
type hierarchies that take over a minute to codegen the adapter module.

One of the main tricky parts of this implementation is that when a
function is generated the index that it will be placed at in the final
module is not known at that time. To solve this the encoded form of the
`Call` instruction is saved in a relocation-style format where the
`Call` isn't encoded but instead saved into a different area for
encoding later. When the entire adapter module is encoded to wasm these
pseudo-`Call` instructions are encoded as real instructions at that
time.

* Fix some memory64 issues with string encodings

Introduced just before #4623 I had a few mistakes related to 64-bit
memories and mixing 32/64-bit memories.

* Actually insert into the `translate_mem_funcs` map

This... was the whole point of having the map!

* Assert memory growth succeeds in bump allocator
2022-08-08 18:01:45 +00:00
Joel Dice
ed8908efcf implement fuzzing for component types (#4537)
This addresses #4307.

For the static API we generate 100 arbitrary test cases at build time, each of
which includes 0-5 parameter types, a result type, and a WAT fragment containing
an imported function and an exported function.  The exported function calls the
imported function, which is implemented by the host.  At runtime, the fuzz test
selects a test case at random and feeds it zero or more sets of arbitrary
parameters and results, checking that values which flow host-to-guest and
guest-to-host make the transition unchanged.

The fuzz test for the dynamic API follows a similar pattern, the only difference
being that test cases are generated at runtime.

Signed-off-by: Joel Dice <joel.dice@fermyon.com>
2022-08-04 12:02:55 -05:00