Commit Graph

5 Commits

Author SHA1 Message Date
Dan Gohman
4e67e08efd Use the target-lexicon crate.
This switches from a custom list of architectures to use the
target-lexicon crate.

 - "set is_64bit=1; isa x86" is replaced with "target x86_64", and
   similar for other architectures, and the `is_64bit` flag is removed
   entirely.

 - The `is_compressed` flag is removed too; it's no longer being used to
   control REX prefixes on x86-64, ARM and Thumb are separate
   architectures in target-lexicon, and we can figure out how to
   select RISC-V compressed encodings when we're ready.
2018-05-30 06:13:35 -07:00
Dan Gohman
1c760ab179 Rename intel to x86.
x86 is the more accurate name, as there are non-Intel x86 implementations.

Fixes #263.
2018-04-12 10:02:16 -07:00
Dan Gohman
e107793b68 Pre-opt: Use the correct operand in the irsub_imm pattern. 2018-03-30 21:02:26 -07:00
Dan Gohman
6606b88136 Optimize immediates and compare and branch sequences (#286)
* Add a pre-opt optimization to change constants into immediates.

This converts 'iadd' + 'iconst' into 'iadd_imm', and so on.

* Optimize away redundant `bint` instructions.

Cretonne has a concept of "Testable" values, which can be either boolean
or integer. When the an instruction needing a "Testable" value receives
the result of a `bint`, converting boolean to integer, eliminate the
`bint`, as it's redundant.

* Postopt: Optimize using CPU flags.

This introduces a post-legalization optimization pass which converts
compare+branch sequences to use flags values on CPUs which support it.

* Define a form of x86's `urm` that doesn't clobber FLAGS.

movzbl/movsbl/etc. don't clobber FLAGS; define a form of the `urm`
recipe that represents this.

* Implement a DCE pass.

This pass deletes instructions with no side effects and no results that
are used.

* Clarify ambiguity about "32-bit" and "64-bit" in comments.

* Add x86 encodings for icmp_imm.

* Add a testcase for postopt CPU flags optimization.

This covers the basic functionality of transforming compare+branch
sequences to use CPU flags.

* Pattern-match irsub_imm in preopt.
2018-03-30 12:30:07 -07:00
Julian Seward
7054f25abb Adds support to transform integer div and rem by constants into cheaper equivalents.
Adds support for transforming integer division and remainder by constants
into sequences that do not involve division instructions.

* div/rem by constant powers of two are turned into right shifts, plus some
  fixups for the signed cases.

* div/rem by constant non-powers of two are turned into double length
  multiplies by a magic constant, plus some fixups involving shifts,
  addition and subtraction, that depends on the constant, the word size and
  the signedness involved.

* The following cases are transformed: div and rem, signed or unsigned, 32
  or 64 bit.  The only un-transformed cases are: unsigned div and rem by
  zero, signed div and rem by zero or -1.

* This is all incorporated within a new transformation pass, "preopt", in
  lib/cretonne/src/preopt.rs.

* In preopt.rs, fn do_preopt() is the main driver.  It is designed to be
  extensible to transformations of other kinds of instructions.  Currently
  it merely uses a helper to identify div/rem transformation candidates and
  another helper to perform the transformation.

* In preopt.rs, fn get_div_info() pattern matches to find candidates, both
  cases where the second arg is an immediate, and cases where the second
  arg is an identifier bound to an immediate at its definition point.

* In preopt.rs, fn do_divrem_transformation() does the heavy lifting of the
  transformation proper.  It in turn uses magic{S,U}{32,64} to calculate the
  magic numbers required for the transformations.

* There are many test cases for the transformation proper:
    filetests/preopt/div_by_const_non_power_of_2.cton
    filetests/preopt/div_by_const_power_of_2.cton
    filetests/preopt/rem_by_const_non_power_of_2.cton
    filetests/preopt/rem_by_const_power_of_2.cton
    filetests/preopt/div_by_const_indirect.cton
  preopt.rs also contains a set of tests for magic number generation.

* The main (non-power-of-2) transformation requires instructions that return
  the high word of a double-length multiply.  For this, instructions umulhi
  and smulhi have been added to the core instruction set.  These will map
  directly to single instructions on most non-intel targets.

* intel does not have an instruction exactly like that.  For intel,
  instructions x86_umulx and x86_smulx have been added.  These map to real
  instructions and return both result words.  The intel legaliser will
  rewrite {s,u}mulhi into x86_{s,u}mulx uses that throw away the lower half
  word.  Tests:
    filetests/isa/intel/legalize-mulhi.cton (new file)
    filetests/isa/intel/binary64.cton (added x86_{s,u}mulx encoding tests)
2018-02-28 11:41:36 -08:00