Commit Graph

28 Commits

Author SHA1 Message Date
Alex Crichton
b14551d7ca Refactor configuration for the pooling allocator (#5205)
This commit changes the APIs in the `wasmtime` crate for configuring the
pooling allocator. I plan on adding a few more configuration options in
the near future and the current structure was feeling unwieldy for
adding these new abstractions.

The previous `struct`-based API has been replaced with a builder-style
API in a similar shape as to `Config`. This is done to help make it
easier to add more configuration options in the future through adding
more methods as opposed to adding more field which could break prior
initializations.
2022-11-04 20:06:45 +00:00
Alex Crichton
2ba604e406 Update spec test repo (#4974)
* Update spec test repo

Our submodule was accidentally reverted to an older commit as part
of #4271 and while it could be updated to as it was before I went ahead
and updated it to `main`.

* Update ignore directives and test multi-memory

* Update riscv ignores
2022-09-28 17:04:17 +00:00
Alex Crichton
04631ad0af Unconditionally enable component-model tests (#4556)
* Unconditionally enable component-model tests

* Remove an outdated test that wasn't previously being compiled

* Fix a component model doc test

* Try to decrease memory usage in qemu
2022-08-01 15:43:37 +00:00
Alex Crichton
97894bc65e Add initial support for fused adapter trampolines (#4501)
* Add initial support for fused adapter trampolines

This commit lands a significant new piece of functionality to Wasmtime's
implementation of the component model in the form of the implementation
of fused adapter trampolines. Internally within a component core wasm
modules can communicate with each other by having their exports
`canon lift`'d to get `canon lower`'d into a different component. This
signifies that two components are communicating through a statically
known interface via the canonical ABI at this time. Previously Wasmtime
was able to identify that this communication was happening but it simply
panicked with `unimplemented!` upon seeing it. This commit is the
beginning of filling out this panic location with an actual
implementation.

The implementation route chosen here for fused adapters is to use a
WebAssembly module itself for the implementation. This means that, at
compile time of a component, Wasmtime is generating core WebAssembly
modules which then get recursively compiled within Wasmtime as well. The
choice to use WebAssembly itself as the implementation of fused adapters
stems from a few motivations:

* This does not represent a significant increase in the "trusted
  compiler base" of Wasmtime. Getting the Wasm -> CLIF translation
  correct once is hard enough much less for an entirely different IR to
  CLIF. By generating WebAssembly no new interactions with Cranelift are
  added which drastically reduces the possibilities for mistakes.

* Using WebAssembly means that component adapters are insulated from
  miscompilations and mistakes. If something goes wrong it's defined
  well within the WebAssembly specification how it goes wrong and what
  happens as a result. This means that the "blast zone" for a wrong
  adapter is the component instance but not the entire host itself.
  Accesses to linear memory are guaranteed to be in-bounds and otherwise
  handled via well-defined traps.

* A fully-finished fused adapter compiler is expected to be a
  significant and quite complex component of Wasmtime. Functionality
  along these lines is expected to be needed for Web-based polyfills of
  the component model and by using core WebAssembly it provides the
  opportunity to share code between Wasmtime and these polyfills for the
  component model.

* Finally the runtime implementation of managing WebAssembly modules is
  already implemented and quite easy to integrate with, so representing
  fused adapters with WebAssembly results in very little extra support
  necessary for the runtime implementation of instantiating and managing
  a component.

The compiler added in this commit is dubbed Wasmtime's Fused Adapter
Compiler of Trampolines (FACT) because who doesn't like deriving a name
from an acronym. Currently the trampoline compiler is limited in its
support for interface types and only supports a few primitives. I plan
on filing future PRs to flesh out the support here for all the variants
of `InterfaceType`. For now this PR is primarily focused on all of the
other infrastructure for the addition of a trampoline compiler.

With the choice to use core WebAssembly to implement fused adapters it
means that adapters need to be inserted into a module. Unfortunately
adapters cannot all go into a single WebAssembly module because adapters
themselves have dependencies which may be provided transitively through
instances that were instantiated with other adapters. This means that a
significant chunk of this PR (`adapt.rs`) is dedicated to determining
precisely which adapters go into precisely which adapter modules. This
partitioning process attempts to make large modules wherever it can to
cut down on core wasm instantiations but is likely not optimal as
it's just a simple heuristic today.

With all of this added together it's now possible to start writing
`*.wast` tests that internally have adapted modules communicating with
one another. A `fused.wast` test suite was added as part of this PR
which is the beginning of tests for the support of the fused adapter
compiler added in this PR. Currently this is primarily testing some
various topologies of adapters along with direct/indirect modes. This
will grow many more tests over time as more types are supported.

Overall I'm not 100% satisfied with the testing story of this PR. When a
test fails it's very difficult to debug since everything is written in
the text format of WebAssembly meaning there's no "conveniences" to
print out the state of the world when things go wrong and easily debug.
I think this will become even more apparent as more tests are written
for more types in subsequent PRs. At this time though I know of no
better alternative other than leaning pretty heavily on fuzz-testing to
ensure this is all exercised.

* Fix an unused field warning

* Fix tests in `wasmtime-runtime`

* Add some more tests for compiled trampolines

* Remap exports when injecting adapters

The exports of a component were accidentally left unmapped which meant
that they indexed the instance indexes pre-adapter module insertion.

* Fix typo

* Rebase conflicts
2022-07-25 23:13:26 +00:00
Dan Gohman
371ae80ac3 Migrate most of wasmtime from lazy_static to once_cell (#4368)
* Update tracing-core to a version which doesn't depend on lazy-static.

* Update crossbeam-utils to a version that doesn't depend on lazy-static.

* Update crossbeam-epoch to a version that doesn't depend on lazy-static.

* Update clap to a version that doesn't depend on lazy-static.

* Convert Wasmtime's own use of lazy_static to once_cell.

* Make `GDB_REGISTRATION`'s comment a doc comment.

* Fix compilation on Windows.
2022-07-05 10:52:48 -07:00
Alex Crichton
fcf6208750 Initial skeleton of some component model processing (#4005)
* Initial skeleton of some component model processing

This commit is the first of what will likely be many to implement the
component model proposal in Wasmtime. This will be structured as a
series of incremental commits, most of which haven't been written yet.
My hope is to make this incremental and over time to make this easier to
review and easier to test each step in isolation.

Here much of the skeleton of how components are going to work in
Wasmtime is sketched out. This is not a complete implementation of the
component model so it's not all that useful yet, but some things you can
do are:

* Process the type section into a representation amenable for working
  with in Wasmtime.
* Process the module section and register core wasm modules.
* Process the instance section for core wasm modules.
* Process core wasm module imports.
* Process core wasm instance aliasing.
* Ability to compile a component with core wasm embedded.
* Ability to instantiate a component with no imports.
* Ability to get functions from this component.

This is already starting to diverge from the previous module linking
representation where a `Component` will try to avoid unnecessary
metadata about the component and instead internally only have the bare
minimum necessary to instantiate the module. My hope is we can avoid
constructing most of the index spaces during instantiation only for it
to all ge thrown away. Additionally I'm predicting that we'll need to
see through processing where possible to know how to generate adapters
and where they are fused.

At this time you can't actually call a component's functions, and that's
the next PR that I would like to make.

* Add tests for the component model support

This commit uses the recently updated wasm-tools crates to add tests for
the component model added in the previous commit. This involved updating
the `wasmtime-wast` crate for component-model changes. Currently the
component support there is quite primitive, but enough to at least
instantiate components and verify the internals of Wasmtime are all
working correctly. Additionally some simple tests for the embedding API
have also been added.
2022-05-20 15:33:18 -05:00
Alex Crichton
76b82910c9 Remove the module linking implementation in Wasmtime (#3958)
* Remove the module linking implementation in Wasmtime

This commit removes the experimental implementation of the module
linking WebAssembly proposal from Wasmtime. The module linking is no
longer intended for core WebAssembly but is instead incorporated into
the component model now at this point. This means that very large parts
of Wasmtime's implementation of module linking are no longer applicable
and would change greatly with an implementation of the component model.

The main purpose of this is to remove Wasmtime's reliance on the support
for module-linking in `wasmparser` and tooling crates. With this
reliance removed we can move over to the `component-model` branch of
`wasmparser` and use the updated support for the component model.
Additionally given the trajectory of the component model proposal the
embedding API of Wasmtime will not look like what it looks like today
for WebAssembly. For example the core wasm `Instance` will not change
and instead a `Component` is likely to be added instead.

Some more rationale for this is in #3941, but the basic idea is that I
feel that it's not going to be viable to develop support for the
component model on a non-`main` branch of Wasmtime. Additionaly I don't
think it's viable, for the same reasons as `wasm-tools`, to support the
old module linking proposal and the new component model at the same
time.

This commit takes a moment to not only delete the existing module
linking implementation but some abstractions are also simplified. For
example module serialization is a bit simpler that there's only one
module. Additionally instantiation is much simpler since the only
initializer we have to deal with are imports and nothing else.

Closes #3941

* Fix doc link

* Update comments
2022-03-23 14:57:34 -05:00
Alex Crichton
2f4419cc6c Implement runtime checks for compilation settings (#3899)
* Implement runtime checks for compilation settings

This commit fills out a few FIXME annotations by implementing run-time
checks that when a `Module` is created it has compatible codegen
settings for the current host (as `Module` is proof of "this code can
run"). This is done by implementing new `Engine`-level methods which
validate compiler settings. These settings are validated on
`Module::new` as well as when loading serialized modules.

Settings are split into two categories, one for "shared" top-level
settings and one for ISA-specific settings. Both categories now have
allow-lists hardcoded into `Engine` which indicate the acceptable values
for each setting (if applicable). ISA-specific settings are checked with
the Rust standard library's `std::is_x86_feature_detected!` macro. Other
macros for other platforms are not stable at this time but can be added
here if necessary.

Closes #3897

* Fix fall-through logic to actually be correct

* Use a `OnceCell`, not an `AtomicBool`

* Fix some broken tests
2022-03-09 09:46:25 -06:00
Alex Crichton
15bb0c6903 Remove the ModuleLimits pooling configuration structure (#3837)
* Remove the `ModuleLimits` pooling configuration structure

This commit is an attempt to improve the usability of the pooling
allocator by removing the need to configure a `ModuleLimits` structure.
Internally this structure has limits on all forms of wasm constructs but
this largely bottoms out in the size of an allocation for an instance in
the instance pooling allocator. Maintaining this list of limits can be
cumbersome as modules may get tweaked over time and there's otherwise no
real reason to limit the number of globals in a module since the main
goal is to limit the memory consumption of a `VMContext` which can be
done with a memory allocation limit rather than fine-tuned control over
each maximum and minimum.

The new approach taken in this commit is to remove `ModuleLimits`. Some
fields, such as `tables`, `table_elements` , `memories`, and
`memory_pages` are moved to `InstanceLimits` since they're still
enforced at runtime. A new field `size` is added to `InstanceLimits`
which indicates, in bytes, the maximum size of the `VMContext`
allocation. If the size of a `VMContext` for a module exceeds this value
then instantiation will fail.

This involved adding a few more checks to `{Table, Memory}::new_static`
to ensure that the minimum size is able to fit in the allocation, since
previously modules were validated at compile time of the module that
everything fit and that validation no longer happens (it happens at
runtime).

A consequence of this commit is that Wasmtime will have no built-in way
to reject modules at compile time if they'll fail to be instantiated
within a particular pooling allocator configuration. Instead a module
must attempt instantiation see if a failure happens.

* Fix benchmark compiles

* Fix some doc links

* Fix a panic by ensuring modules have limited tables/memories

* Review comments

* Add back validation at `Module` time instantiation is possible

This allows for getting an early signal at compile time that a module
will never be instantiable in an engine with matching settings.

* Provide a better error message when sizes are exceeded

Improve the error message when an instance size exceeds the maximum by
providing a breakdown of where the bytes are all going and why the large
size is being requested.

* Try to fix test in qemu

* Flag new test as 64-bit only

Sizes are all specific to 64-bit right now
2022-02-25 09:11:51 -06:00
Alex Crichton
9c6884e28d Update the spec reference testsuite submodule (#3450)
* Update the spec reference testsuite submodule

This commit brings in recent updates to the spec test suite. Most of the
changes here were already fixed in `wasmparser` with some tweaks to
esoteric modules, but Wasmtime also gets a bug fix where where import
matching for the size of tables/memories is based on the current runtime
size of the table/memory rather than the original type of the
table/memory. This means that during type matching the actual value is
consulted for its size rather than using the minimum size listed in its
type.

* Fix now-missing directories in build script
2021-10-13 16:14:12 -05:00
bjorn3
9e34df33b9 Remove the old x86 backend 2021-09-29 16:13:46 +02:00
Alex Crichton
f5041dd362 Implement a setting for reserved dynamic memory growth (#3215)
* Implement a setting for reserved dynamic memory growth

Dynamic memories aren't really that heavily used in Wasmtime right now
because for most 32-bit memories they're classified as "static" which
means they reserve 4gb of address space and never move. Growth of a
static memory is simply making pages accessible, so it's quite fast.

With the memory64 feature, however, this is no longer true since all
memory64 memories are classified as "dynamic" at this time. Previous to
this commit growth of a dynamic memory unconditionally moved the entire
linear memory in the host's address space, always resulting in a new
`Mmap` allocation. This behavior is causing fuzzers to time out when
working with 64-bit memories because incrementally growing a memory by 1
page at a time can incur a quadratic time complexity as bytes are
constantly moved.

This commit implements a scheme where there is now a tunable setting for
memory to be reserved at the end of a dynamic memory to grow into. This
means that dynamic memory growth is ideally amortized as most calls to
`memory.grow` will be able to grow into the pre-reserved space. Some
calls, though, will still need to copy the memory around.

This helps enable a commented out test for 64-bit memories now that it's
fast enough to run in debug mode. This is because the growth of memory
in the test no longer needs to copy 4gb of zeros.

* Test fixes & review comments

* More comments
2021-08-20 10:54:23 -05:00
Alex Crichton
0313e30d76 Remove dependency on TargetIsa from Wasmtime crates (#3178)
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.

This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:

* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
  server as an abstraction used to create compilers and configure them
  in a uniform fashion. The `wasmtime::Config` type now uses this
  instead of cranelift-specific settings. The `wasmtime-jit` crate
  exports the ability to create a compiler builder from a
  `CompilationStrategy`, which only works for Cranelift right now. In a
  cranelift-less build of Wasmtime this is expected to return a trait
  object that fails all requests to compile.

* The `Compiler` trait in the `wasmtime_environ` crate has been souped
  up with a number of methods that Wasmtime and other crates needed.

* The `wasmtime-debug` crate is now moved entirely behind the
  `wasmtime-cranelift` crate.

* The `wasmtime-cranelift` crate is now only depended on by the
  `wasmtime-jit` crate.

* Wasm types in `cranelift-wasm` no longer contain their IR type,
  instead they only contain the `WasmType`. This is required to get
  everything to align correctly but will also be required in a future
  refactoring where the types used by `cranelift-wasm` will be extracted
  to a separate crate.

* I moved around a fair bit of code in `wasmtime-cranelift`.

* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
  `wasmtime-jit`.
2021-08-16 09:55:39 -05:00
Alex Crichton
e68aa99588 Implement the memory64 proposal in Wasmtime (#3153)
* Implement the memory64 proposal in Wasmtime

This commit implements the WebAssembly [memory64 proposal][proposal] in
both Wasmtime and Cranelift. In terms of work done Cranelift ended up
needing very little work here since most of it was already prepared for
64-bit memories at one point or another. Most of the work in Wasmtime is
largely refactoring, changing a bunch of `u32` values to something else.

A number of internal and public interfaces are changing as a result of
this commit, for example:

* Acessors on `wasmtime::Memory` that work with pages now all return
  `u64` unconditionally rather than `u32`. This makes it possible to
  accommodate 64-bit memories with this API, but we may also want to
  consider `usize` here at some point since the host can't grow past
  `usize`-limited pages anyway.

* The `wasmtime::Limits` structure is removed in favor of
  minimum/maximum methods on table/memory types.

* Many libcall intrinsics called by jit code now unconditionally take
  `u64` arguments instead of `u32`. Return values are `usize`, however,
  since the return value, if successful, is always bounded by host
  memory while arguments can come from any guest.

* The `heap_addr` clif instruction now takes a 64-bit offset argument
  instead of a 32-bit one. It turns out that the legalization of
  `heap_addr` already worked with 64-bit offsets, so this change was
  fairly trivial to make.

* The runtime implementation of mmap-based linear memories has changed
  to largely work in `usize` quantities in its API and in bytes instead
  of pages. This simplifies various aspects and reflects that
  mmap-memories are always bound by `usize` since that's what the host
  is using to address things, and additionally most calculations care
  about bytes rather than pages except for the very edge where we're
  going to/from wasm.

Overall I've tried to minimize the amount of `as` casts as possible,
using checked `try_from` and checked arithemtic with either error
handling or explicit `unwrap()` calls to tell us about bugs in the
future. Most locations have relatively obvious things to do with various
implications on various hosts, and I think they should all be roughly of
the right shape but time will tell. I mostly relied on the compiler
complaining that various types weren't aligned to figure out
type-casting, and I manually audited some of the more obvious locations.
I suspect we have a number of hidden locations that will panic on 32-bit
hosts if 64-bit modules try to run there, but otherwise I think we
should be generally ok (famous last words). In any case I wouldn't want
to enable this by default naturally until we've fuzzed it for some time.

In terms of the actual underlying implementation, no one should expect
memory64 to be all that fast. Right now it's implemented with
"dynamic" heaps which have a few consequences:

* All memory accesses are bounds-checked. I'm not sure how aggressively
  Cranelift tries to optimize out bounds checks, but I suspect not a ton
  since we haven't stressed this much historically.

* Heaps are always precisely sized. This means that every call to
  `memory.grow` will incur a `memcpy` of memory from the old heap to the
  new. We probably want to at least look into `mremap` on Linux and
  otherwise try to implement schemes where dynamic heaps have some
  reserved pages to grow into to help amortize the cost of
  `memory.grow`.

The memory64 spec test suite is scheduled to now run on CI, but as with
all the other spec test suites it's really not all that comprehensive.
I've tried adding more tests for basic things as I've had to implement
guards for them, but I wouldn't really consider the testing adequate
from just this PR itself. I did try to take care in one test to actually
allocate a 4gb+ heap and then avoid running that in the pooling
allocator or in emulation because otherwise that may fail or take
excessively long.

[proposal]: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md

* Fix some tests

* More test fixes

* Fix wasmtime tests

* Fix doctests

* Revert to 32-bit immediate offsets in `heap_addr`

This commit updates the generation of addresses in wasm code to always
use 32-bit offsets for `heap_addr`, and if the calculated offset is
bigger than 32-bits we emit a manual add with an overflow check.

* Disable memory64 for spectest fuzzing

* Fix wrong offset being added to heap addr

* More comments!

* Clarify bytes/pages
2021-08-12 09:40:20 -05:00
Alex Crichton
c6b095f9a3 cranelift: Implement nan canonicalization for vectors (#3146)
This fixes some fuzz bugs that came about enabling simd where nan
canonicalization is performed on the fuzzers but cranelift would panic
on these ops for vectors. This adds some custom codegen with `bitselect`
to ensure any nan lanes are canonical-nan lanes in the canonicalized
operations.
2021-08-05 13:44:16 -05:00
Alex Crichton
85f16f488d Consolidate address calculations for atomics (#3143)
* Consolidate address calculations for atomics

This commit consolidates all calcuations of guest addresses into one
`prepare_addr` function. This notably remove the atomics-specifics paths
as well as the `prepare_load` function (now renamed to `prepare_addr`
and folded into `get_heap_addr`).

The goal of this commit is to simplify how addresses are managed in the
code generator for atomics to use all the shared infrastrucutre of other
loads/stores as well. This additionally fixes #3132 via the use of
`heap_addr` in clif for all operations.

I also added a number of tests for loads/stores with varying alignments.
Originally I was going to allow loads/stores to not be aligned since
that's what the current formal specification says, but the overview of
the threads proposal disagrees with the formal specification, so I
figured I'd leave it as-is but adding tests probably doesn't hurt.

Closes #3132

* Fix old backend

* Guarantee misalignment checks happen before out-of-bounds
2021-08-04 15:57:56 -05:00
Alex Crichton
91d24b8448 Fix pooling tests on high-cpu-count systems (#3141)
This commit fixes an issue where `cargo test` was failing pretty
reliably on an 80-thread system where many of the pooling tests would
fail in `mmap` to reserve address space for the linear memories
allocated for a pooling allocator. Each test wants to reserve about 6TB
of address space, and if we let 80 tests do that apparently Linux
doesn't like that and starts returning errors from `mmap`.

The implementation here is a relatively simple semaphore-lookalike
which allows a fixed amount of concurrency in pooling tests.
2021-08-04 11:55:52 -05:00
Alex Crichton
7a1b7cdf92 Implement RFC 11: Redesigning Wasmtime's APIs (#2897)
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
2021-06-03 09:10:53 -05:00
Peter Huene
54c07d8f16 Implement shared host functions. (#2625)
* Implement defining host functions at the Config level.

This commit introduces defining host functions at the `Config` rather than with
`Func` tied to a `Store`.

The intention here is to enable a host to define all of the functions once
with a `Config` and then use a `Linker` (or directly with
`Store::get_host_func`) to use the functions when instantiating a module.

This should help improve the performance of use cases where a `Store` is
short-lived and redefining the functions at every module instantiation is a
noticeable performance hit.

This commit adds `add_to_config` to the code generation for Wasmtime's `Wasi`
type.

The new method adds the WASI functions to the given config as host functions.

This commit adds context functions to `Store`: `get` to get a context of a
particular type and `set` to set the context on the store.

For safety, `set` cannot replace an existing context value of the same type.

`Wasi::set_context` was added to set the WASI context for a `Store` when using
`Wasi::add_to_config`.

* Add `Config::define_host_func_async`.

* Make config "async" rather than store.

This commit moves the concept of "async-ness" to `Config` rather than `Store`.

Note: this is a breaking API change for anyone that's already adopted the new
async support in Wasmtime.

Now `Config::new_async` is used to create an "async" config and any `Store`
associated with that config is inherently "async".

This is needed for async shared host functions to have some sanity check during their
execution (async host functions, like "async" `Func`, need to be called with
the "async" variants).

* Update async function tests to smoke async shared host functions.

This commit updates the async function tests to also smoke the shared host
functions, plus `Func::wrap0_async`.

This also changes the "wrap async" method names on `Config` to
`wrap$N_host_func_async` to slightly better match what is on `Func`.

* Move the instance allocator into `Engine`.

This commit moves the instantiated instance allocator from `Config` into
`Engine`.

This makes certain settings in `Config` no longer order-dependent, which is how
`Config` should ideally be.

This also removes the confusing concept of the "default" instance allocator,
instead opting to construct the on-demand instance allocator when needed.

This does alter the semantics of the instance allocator as now each `Engine`
gets its own instance allocator rather than sharing a single one between all
engines created from a configuration.

* Make `Engine::new` return `Result`.

This is a breaking API change for anyone using `Engine::new`.

As creating the pooling instance allocator may fail (likely cause is not enough
memory for the provided limits), instead of panicking when creating an
`Engine`, `Engine::new` now returns a `Result`.

* Remove `Config::new_async`.

This commit removes `Config::new_async` in favor of treating "async support" as
any other setting on `Config`.

The setting is `Config::async_support`.

* Remove order dependency when defining async host functions in `Config`.

This commit removes the order dependency where async support must be enabled on
the `Config` prior to defining async host functions.

The check is now delayed to when an `Engine` is created from the config.

* Update WASI example to use shared `Wasi::add_to_config`.

This commit updates the WASI example to use `Wasi::add_to_config`.

As only a single store and instance are used in the example, it has no semantic
difference from the previous example, but the intention is to steer users
towards defining WASI on the config and only using `Wasi::add_to_linker` when
more explicit scoping of the WASI context is required.
2021-03-11 10:14:03 -06:00
Peter Huene
57dfe99aa5 Run wast tests with both instance allocators.
This commit adds a "pooling" variant to the wast tests that uses the pooling
instance allocation strategy.

This should help with the test coverage of the pooling instance allocator.
2021-03-05 22:28:51 -08:00
Yury Delendik
3580205f12 [Cranelift][Atomics] Add address folding for atomic notify/wait. (#2556)
* fold address in wasm wait and notify ops

* add atomics addr folding tests
2021-01-08 11:55:21 -06:00
Alex Crichton
f003388ec7 Implement imported/exported modules/instances (#2461)
* Implement imported/exported modules/instances

This commit implements the final piece of the module linking proposal
which is to flesh out the support for importing/exporting instances and
modules. This ended up having a few changes:

* Two more `PrimaryMap` instances are now stored in an `Instance`. The value
  for instances is `InstanceHandle` (pretty easy) and for modules it's
  `Box<dyn Any>` (less easy).

* The custom host state for `InstanceHandle` for `wasmtime` is now
  `Arc<TypeTables` to be able to fully reconstruct an instance's types
  just from its instance.

* Type matching for imports now has been updated to take
  instances/modules into account.

One of the main downsides of this implementation is that type matching
of imports is duplicated between wasmparser and wasmtime, leading to
posssible bugs especially in the subtelties of module linking. I'm not
sure how best to unify these two pieces of validation, however, and it
may be more trouble than it's worth.

cc #2094

* Update wat/wast/wasmparser

* Review comments

* Fix a bug in publish script to vendor the right witx

Currently there's two witx binaries in our repository given the two wasi
spec submodules, so this updates the publication script to vendor the
right one.
2020-12-03 10:15:42 -06:00
Alex Crichton
88a8a8993a Instantiate nested modules for module linking (#2447)
This commit implements the interpretation necessary of the instance
section of the module linking proposal. Instantiating a module which
itself has nested instantiated instances will now instantiate the nested
instances properly. This isn't all that useful without the ability to
alias exports off the result, but we can at least observe the side
effects of instantiation through the `start` function.

cc #2094
2020-12-01 14:01:31 -06:00
Alex Crichton
e659d5cecd Add initial support for the multi-memory proposal (#2263)
This commit adds initial (gated) support for the multi-memory wasm
proposal. This was actually quite easy since almost all of wasmtime
already expected multi-memory to be implemented one day. The only real
substantive change is the `memory.copy` intrinsic changes, which now
accounts for the source/destination memories possibly being different.
2020-10-13 19:13:52 -05:00
Alex Crichton
06a69d18fa Disable static memory under QEMU on CI (#1895)
* Enable the spec::simd::simd_align test for AArch64

Copyright (c) 2020, Arm Limited.

* Disable static memory under QEMU on CI

This commit disables the usage of "static" memory on CI and instead
forces all memories to be "dynamic" meaning that they reserve much
smaller chunks of memory. This causes the QEMU process's memory to
drastically drop (10GiB -> 600MiB) and should allow us to keep enabling
tests without hitting the OOM killer on CI.

Closes #1871 (includes that)
Closes #1893

* Fix typo

Co-authored-by: Anton Kirilov <anton.kirilov@arm.com>
2020-06-17 21:05:21 -05:00
Alex Crichton
57fb1c69c5 Enable the multi-value proposal by default (#1667)
This was merged into the wasm spec upstream in WebAssembly/spec#1145, so
let's follow the spec and enable it by default here as well!
2020-05-06 12:37:29 -05:00
Andrew Brown
49622bde58 Use complex load-extend instructions in optimize_complex_addresses; fixes #1186 2020-04-30 11:38:01 -07:00
Alex Crichton
4c82da440a Move most wasmtime tests into one test suite (#1544)
* Move most wasmtime tests into one test suite

This commit moves most wasmtime tests into a single test suite which
gets compiled into one executable instead of having lots of test
executables. The goal here is to reduce disk space on CI, and this
should be achieved by having fewer executables which means fewer copies
of `libwasmtime.rlib` linked across binaries on the system. More
importantly though this means that DWARF debug information should only
be in one executable rather than duplicated across many.

* Share more build caches

Globally set `RUSTFLAGS` to `-Dwarnings` instead of individually so all
build steps share the same value.

* Allow some dead code in cranelift-codegen

Prevents having to fix all warnings for all possible feature
combinations, only the main ones which come up.

* Update some debug file paths
2020-04-17 17:22:12 -05:00