Commit Graph

18 Commits

Author SHA1 Message Date
Alex Crichton
cd53bed898 Implement AOT compilation for components (#5160)
* Pull `Module` out of `ModuleTextBuilder`

This commit is the first in what will likely be a number towards
preparing for serializing a compiled component to bytes, a precompiled
artifact. To that end my rough plan is to merge all of the compiled
artifacts for a component into one large object file instead of having
lots of separate object files and lots of separate mmaps to manage. To
that end I plan on eventually using `ModuleTextBuilder` to build one
large text section for all core wasm modules and trampolines, meaning
that `ModuleTextBuilder` is no longer specific to one module. I've
extracted out functionality such as function name calculation as well as
relocation resolving (now a closure passed in) in preparation for this.

For now this just keeps tests passing, and the trajectory for this
should become more clear over the following commits.

* Remove component-specific object emission

This commit removes the `ComponentCompiler::emit_obj` function in favor
of `Compiler::emit_obj`, now renamed `append_code`. This involved
significantly refactoring code emission to take a flat list of functions
into `append_code` and the caller is responsible for weaving together
various "families" of functions and un-weaving them afterwards.

* Consolidate ELF parsing in `CodeMemory`

This commit moves the ELF file parsing and section iteration from
`CompiledModule` into `CodeMemory` so one location keeps track of
section ranges and such. This is in preparation for sharing much of this
code with components which needs all the same sections to get tracked
but won't be using `CompiledModule`. A small side benefit from this is
that the section parsing done in `CodeMemory` and `CompiledModule` is no
longer duplicated.

* Remove separately tracked traps in components

Previously components would generate an "always trapping" function
and the metadata around which pc was allowed to trap was handled
manually for components. With recent refactorings the Wasmtime-standard
trap section in object files is now being generated for components as
well which means that can be reused instead of custom-tracking this
metadata. This commit removes the manual tracking for the `always_trap`
functions and plumbs the necessary bits around to make components look
more like modules.

* Remove a now-unnecessary `Arc` in `Module`

Not expected to have any measurable impact on performance, but
complexity-wise this should make it a bit easier to understand the
internals since there's no longer any need to store this somewhere else
than its owner's location.

* Merge compilation artifacts of components

This commit is a large refactoring of the component compilation process
to produce a single artifact instead of multiple binary artifacts. The
core wasm compilation process is refactored as well to share as much
code as necessary with the component compilation process.

This method of representing a compiled component necessitated a few
medium-sized changes internally within Wasmtime:

* A new data structure was created, `CodeObject`, which represents
  metadata about a single compiled artifact. This is then stored as an
  `Arc` within a component and a module. For `Module` this is always
  uniquely owned and represents a shuffling around of data from one
  owner to another. For a `Component`, however, this is shared amongst
  all loaded modules and the top-level component.

* The "module registry" which is used for symbolicating backtraces and
  for trap information has been updated to account for a single region
  of loaded code holding possibly multiple modules. This involved adding
  a second-level `BTreeMap` for now. This will likely slow down
  instantiation slightly but if it poses an issue in the future this
  should be able to be represented with a more clever data structure.

This commit additionally solves a number of longstanding issues with
components such as compiling only one host-to-wasm trampoline per
signature instead of possibly once-per-module. Additionally the
`SignatureCollection` registration now happens once-per-component
instead of once-per-module-within-a-component.

* Fix compile errors from prior commits

* Support AOT-compiling components

This commit adds support for AOT-compiled components in the same manner
as `Module`, specifically adding:

* `Engine::precompile_component`
* `Component::serialize`
* `Component::deserialize`
* `Component::deserialize_file`

Internally the support for components looks quite similar to `Module`.
All the prior commits to this made adding the support here
(unsurprisingly) easy. Components are represented as a single object
file as are modules, and the functions for each module are all piled
into the same object file next to each other (as are areas such as data
sections). Support was also added here to quickly differentiate compiled
components vs compiled modules via the `e_flags` field in the ELF
header.

* Prevent serializing exported modules on components

The current representation of a module within a component means that the
implementation of `Module::serialize` will not work if the module is
exported from a component. The reason for this is that `serialize`
doesn't actually do anything and simply returns the underlying mmap as a
list of bytes. The mmap, however, has `.wasmtime.info` describing
component metadata as opposed to this module's metadata. While rewriting
this section could be implemented it's not so easy to do so and is
otherwise seen as not super important of a feature right now anyway.

* Fix windows build

* Fix an unused function warning

* Update crates/environ/src/compilation.rs

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
2022-11-02 15:26:26 +00:00
Pat Hickey
12e4a1ba18 component model: async host function & embedding support (#5055)
* func_wrap_async typechecks

* func call async

* instantiate_async

* fixes

* async engine creation for tests

* start adding a component model test for async

* fix wrong check for async support, factor out Instance::new_started to an unchecked impl

* tests: wibbles

* component::Linker::func_wrap: replace IntoComponentFunc with directly accepting a closure

We find that this makes the Linker::func_wrap type signature much easier
to read. The IntoComponentFunc abstraction was adding a lot of weight to
"splat" a set of arguments from a tuple of types into individual
arguments to the closure. Additionally, making the StoreContextMut
argument optional, or the Result<return> optional, wasn't very
worthwhile.

* Fixes for the new style of closure required by component::Linker::func_wrap

* future of result of return

* add Linker::instantiate_async and {Typed}Func::post_return_async

* fix fuzzing generator

* note optimisation opportunity

* simplify test
2022-10-18 15:40:57 -05:00
Alex Crichton
29c7de7340 Update wasm-tools dependencies (#4970)
* Update wasm-tools dependencies

This update brings in a number of features such as:

* The component model binary format and AST has been slightly adjusted
  in a few locations. Names are dropped from parameters/results now in
  the internal representation since they were not used anyway. At this
  time the ability to bind a multi-return function has not been exposed.

* The `wasmparser` validator pass will now share allocations with prior
  functions, providing what's probably a very minor speedup for Wasmtime
  itself.

* The text format for many component-related tests now requires named
  parameters.

* Some new relaxed-simd instructions are updated to be ignored.

I hope to have a follow-up to expose the multi-return ability to the
embedding API of components.

* Update audit information for new crates
2022-09-27 13:12:34 -05:00
Alex Crichton
650979ae40 Implement strings in adapter modules (#4623)
* Implement strings in adapter modules

This commit is a hefty addition to Wasmtime's support for the component
model. This implements the final remaining type (in the current type
hierarchy) unimplemented in adapter module trampolines: strings. Strings
are the most complicated type to implement in adapter trampolines
because they are highly structured chunks of data in memory (according
to specific encodings). Additionally each lift/lower operation can
choose its own encoding for strings meaning that Wasmtime, the host, may
have to convert between any pairwise ordering of string encodings.

The `CanonicalABI.md` in the component-model repo in general specifies
all the fiddly bits of string encoding so there's not a ton of wiggle
room for Wasmtime to get creative. This PR largely "just" implements
that. The high-level architecture of this implementation is:

* Fused adapters are first identified to determine src/dst string
  encodings. This statically fixes what transcoding operation is being
  performed.

* The generated adapter will be responsible for managing calls to
  `realloc` and performing bounds checks. The adapter itself does not
  perform memory copies or validation of string contents, however.
  Instead each transcoding operation is modeled as an imported function
  into the adapter module.  This means that the adapter module
  dynamically, during compile time, determines what string transcoders
  are needed. Note that an imported transcoder is not only parameterized
  over the transcoding operation but additionally which memory is the
  source and which is the destination.

* The imported core wasm functions are modeled as a new
  `CoreDef::Transcoder` structure. These transcoders end up being small
  Cranelift-compiled trampolines. The Cranelift-compiled trampoline will
  load the actual base pointer of memory and add it to the relative
  pointers passed as function arguments. This trampoline then calls a
  transcoder "libcall" which enters Rust-defined functions for actual
  transcoding operations.

* Each possible transcoding operation is implemented in Rust with a
  unique name and a unique signature depending on the needs of the
  transcoder. I've tried to document inline what each transcoder does.

This means that the `Module::translate_string` in adapter modules is by
far the largest translation method. The main reason for this is due to
the management around calling the imported transcoder functions in the
face of validating string pointer/lengths and performing the dance of
`realloc`-vs-transcode at the right time. I've tried to ensure that each
individual case in transcoding is documented well enough to understand
what's going on as well.

Additionally in this PR is a full implementation in the host for the
`latin1+utf16` encoding which means that both lifting and lowering host
strings now works with this encoding.

Currently the implementation of each transcoder function is likely far
from optimal. Where possible I've leaned on the standard library itself
and for latin1-related things I'm leaning on the `encoding_rs` crate. I
initially tried to implement everything with `encoding_rs` but was
unable to uniformly do so easily. For now I settled on trying to get a
known-correct (even in the face of endianness) implementation for all of
these transcoders. If an when performance becomes an issue it should be
possible to implement more optimized versions of each of these
transcoding operations.

Testing this commit has been somewhat difficult and my general plan,
like with the `(list T)` type, is to rely heavily on fuzzing to cover
the various cases here. In this PR though I've added a simple test that
pushes some statically known strings through all the pairs of encodings
between source and destination. I've attempted to pick "interesting"
strings that one way or another stress the various paths in each
transcoding operation to ideally get full branch coverage there.
Additionally a suite of "negative" tests have also been added to ensure
that validity of encoding is actually checked.

* Fix a temporarily commented out case

* Fix wasmtime-runtime tests

* Update deny.toml configuration

* Add `BSD-3-Clause` for the `encoding_rs` crate
* Remove some unused licenses

* Add an exemption for `encoding_rs` for now

* Split up the `translate_string` method

Move out all the closures and package up captured state into smaller
lists of arguments.

* Test out-of-bounds for zero-length strings
2022-08-08 16:01:57 +00:00
Joel Dice
ed8908efcf implement fuzzing for component types (#4537)
This addresses #4307.

For the static API we generate 100 arbitrary test cases at build time, each of
which includes 0-5 parameter types, a result type, and a WAT fragment containing
an imported function and an exported function.  The exported function calls the
imported function, which is implemented by the host.  At runtime, the fuzz test
selects a test case at random and feeds it zero or more sets of arbitrary
parameters and results, checking that values which flow host-to-guest and
guest-to-host make the transition unchanged.

The fuzz test for the dynamic API follows a similar pattern, the only difference
being that test cases are generated at runtime.

Signed-off-by: Joel Dice <joel.dice@fermyon.com>
2022-08-04 12:02:55 -05:00
Alex Crichton
ee5b192d35 Re-enable component model *.wast tests (#4577)
* Re-enable component model `*.wast` tests

These accidentally stopped running as part of #4556 on CI since I forgot
one more location to touch a feature gate.

* Enable logging in component tests

This is a small convenience to get log messages during testing for
components by default.
2022-08-02 15:43:33 -05:00
Alex Crichton
893fadb485 components: Fix support for 0-sized flags (#4560)
This commit goes through and updates support in the various argument
passing routines to support 0-sized flags. A bit of a degenerate case
but clarified in WebAssembly/component-model#76 as intentional.
2022-08-01 16:05:09 +00:00
Alex Crichton
04631ad0af Unconditionally enable component-model tests (#4556)
* Unconditionally enable component-model tests

* Remove an outdated test that wasn't previously being compiled

* Fix a component model doc test

* Try to decrease memory usage in qemu
2022-08-01 15:43:37 +00:00
Joel Dice
7c67e620c4 support dynamic function calls in component model (#4442)
* support dynamic function calls in component model

This addresses #4310, introducing a new `component::values::Val` type for
representing component values dynamically, as well as `component::types::Type`
for representing the corresponding interface types. It also adds a `call` method
to `component::func::Func`, which takes a slice of `Val`s as parameters and
returns a `Result<Val>` representing the result.

Note that I've moved `post_return` and `call_raw` from `TypedFunc` to `Func`
since there was nothing specific to `TypedFunc` about them, and I wanted to
reuse them.  The code in both is unchanged beyond the trivial tweaks to make
them fit in their new home.

Signed-off-by: Joel Dice <joel.dice@fermyon.com>

* order variants and match cases more consistently

Signed-off-by: Joel Dice <joel.dice@fermyon.com>

* implement lift for String, Box<str>, etc.

This also removes the redundant `store` parameter from `Type::load`.

Signed-off-by: Joel Dice <joel.dice@fermyon.com>

* implement code review feedback

This fixes a few issues:

- Bad offset calculation when lowering
- Missing variant padding
- Style issues regarding `types::Handle`
- Missed opportunities to reuse `Lift` and `Lower` impls

It also adds forwarding `Lift` impls for `Box<[T]>`, `Vec<T>`, etc.

Signed-off-by: Joel Dice <joel.dice@fermyon.com>

* move `new_*` methods to specific `types` structs

Per review feedback, I've moved `Type::new_record` to `Record::new_val` and
added a `Type::unwrap_record` method; likewise for the other kinds of types.

Signed-off-by: Joel Dice <joel.dice@fermyon.com>

* make tuple, option, and expected type comparisons recursive

These types should compare as equal across component boundaries as long as their
type parameters are equal.

Signed-off-by: Joel Dice <joel.dice@fermyon.com>

* improve error diagnostic in `Type::check`

We now distinguish between more failure cases to provide an informative error
message.

Signed-off-by: Joel Dice <joel.dice@fermyon.com>

* address review feedback

- Remove `WasmStr::to_str_from_memory` and `WasmList::get_from_memory`
- add `try_new` methods to various `values` types
- avoid using `ExactSizeIterator::len` where we can't trust it
- fix over-constrained bounds on forwarded `ComponentType` impls

Signed-off-by: Joel Dice <joel.dice@fermyon.com>

* rearrange code per review feedback

- Move functions from `types` to `values` module so we can make certain struct fields private
- Rename `try_new` to just `new`

Signed-off-by: Joel Dice <joel.dice@fermyon.com>

* remove special-case equality test for tuples, options, and expecteds

Instead, I've added a FIXME comment and will open an issue to do recursive
structural equality testing.

Signed-off-by: Joel Dice <joel.dice@fermyon.com>
2022-07-25 13:38:48 -05:00
Alex Crichton
76a2545a7f Implement nested instance exports for components (#4364)
This commit adds support to Wasmtime for components which themselves
export instances. The support here adds new APIs for how instance
exports are accessed in the embedding API. For now this is mostly just a
first-pass where the API is somewhat confusing and has a lot of
lifetimes. I'm hoping that over time we can figure out how to simplify
this but for now it should at least be expressive enough for exploring
the exports of an instance.
2022-07-05 16:04:54 +00:00
Joel Dice
22fb3ecbbf add ComponentType/Lift/Lower derive macro for record types (#4337)
This is the first stage of implementing
https://github.com/bytecodealliance/wasmtime/issues/4308, i.e. derive macros for
`ComponentType`, `Lift`, and `Lower` for composite types in the component model.
This stage only covers records; I expect the other composite types will follow a
similar pattern.

It borrows heavily from the work Jamey Sharp did in
https://github.com/bytecodealliance/wasmtime/pull/4217.  Thanks for that, and
thanks to both Jamey and Alex Crichton for their excellent review feedback.
Thanks also to Brian for pairing up on the initial draft.

Signed-off-by: Joel Dice <joel.dice@fermyon.com>
2022-06-29 09:38:36 -05:00
Alex Crichton
3339dd1f01 Implement the post-return attribute (#4297)
This commit implements the `post-return` feature of the canonical ABI in
the component model. This attribute is an optionally-specified function
which is to be executed after the return value has been processed by the
caller to optionally clean-up the return value. This enables, for
example, returning an allocated string and the host then knows how to
clean it up to prevent memory leaks in the original module.

The API exposed in this PR changes the prior `TypedFunc::call` API in
behavior but not in its signature. Previously the `TypedFunc::call`
method would set the `may_enter` flag on the way out, but now that
operation is deferred until a new `TypedFunc::post_return` method is
called. This means that once a method on an instance is invoked then
nothing else can be done on the instance until the `post_return` method
is called. Note that the method must be called irrespective of whether
the `post-return` canonical ABI option was specified or not. Internally
wasm will be invoked if necessary.

This is a pretty wonky and unergonomic API to work with. For now I
couldn't think of a better alternative that improved on the ergonomics.
In the theory that the raw Wasmtime bindings for a component may not be
used all that heavily (instead `wit-bindgen` would largely be used) I'm
hoping that this isn't too much of an issue in the future.

cc #4185
2022-06-23 14:36:21 -05:00
Alex Crichton
651f40855f Add support for nested components (#4285)
* Add support for nested components

This commit is an implementation of a number of features of the
component model including:

* Defining nested components
* Outer aliases to components and modules
* Instantiating nested components

The implementation here is intended to be a foundational pillar of
Wasmtime's component model support since recursion and nested components
are the bread-and-butter of the component model. At a high level the
intention for the component model implementation in Wasmtime has long
been that the recursive nature of components is "erased" at compile time
to something that's more optimized and efficient to process. This commit
ended up exemplifying this quite well where the vast majority of the
internal changes here are in the "compilation" phase of a component
rather than the runtime instantiation phase. The support in the
`wasmtime` crate, the runtime instantiation support, only had minor
updates here while the internals of translation have seen heavy updates.

The `translate` module was greatly refactored here in this commit.
Previously it would, as a component is parsed, create a final
`Component` to hand off to trampoline compilation and get persisted at
runtime. Instead now it's a thin layer over `wasmparser` which simply
records a list of `LocalInitializer` entries for how to instantiate the
component and its index spaces are built. This internal representation
of the instantiation of a component is pretty close to the binary format
intentionally.

Instead of performing dataflow legwork the `translate` phase of a
component is now responsible for two primary tasks:

1. All components and modules are discovered within a component. They're
   assigned `Static{Component,Module}Index` depending on where they're
   found and a `{Module,}Translation` is prepared for each one. This
   "flattens" the recursive structure of the binary into an indexed list
   processable later.

2. The lexical scope of components is managed here to implement outer
   module and component aliases. This is a significant design
   implementation because when closing over an outer component or module
   that item may actually be imported or something like the result of a
   previous instantiation. This means that the capture of
   modules and components is both a lexical concern as well as a runtime
   concern. The handling of the "runtime" bits are handled in the next
   phase of compilation.

The next and currently final phase of compilation is a new pass where
much of the historical code in `translate.rs` has been moved to (but
heavily refactored). The goal of compilation is to produce one "flat"
list of initializers for a component (as happens prior to this PR) and
to achieve this an "inliner" phase runs which runs through the
instantiation process at compile time to produce a list of initializers.
This `inline` module is the main addition as part of this PR and is now
the workhorse for dataflow analysis and tracking what's actually
referring to what.

During the `inline` phase the local initializers recorded in the
`translate` phase are processed, in sequence, to instantiate a
component. Definitions of items are tracked to correspond to their root
definition which allows seeing across instantiation argument boundaries
and such. Handling "upvars" for component outer aliases is handled in
the `inline` phase as well by creating state for a component whenever a
component is defined as was recorded during the `translate` phase.
Finally this phase is chiefly responsible for doing all string-based
name resolution at compile time that it can. This means that at runtime
no string maps will need to be consulted for item exports and such.
The final result of inlining is a list of "global initializers" which is
a flat list processed during instantiation time. These are almost
identical to the initializers that were processed prior to this PR.

There are certainly still more gaps of the component model to implement
but this should be a major leg up in terms of functionality that
Wasmtime implements. This commit, however leaves behind a "hole" which
is not intended to be filled in at this time, namely importing and
exporting components at the "root" level from and to the host. This is
tracked and explained in more detail as part of #4283.

cc #4185 as this completes a number of items there

* Tweak code to work on stable without warning

* Review comments
2022-06-21 13:48:56 -05:00
Alex Crichton
7d7ddceb17 Update wasm-tools crates (#4246)
This commit updates the wasm-tools family of crates, notably pulling in
the refactorings and updates from bytecodealliance/wasm-tools#621 for
the latest iteration of the component model. This commit additionally
updates all support for the component model for these changes, notably:

* Many bits and pieces of type information was refactored. Many
  `FooTypeIndex` namings are now `TypeFooIndex`. Additionally there is
  now `TypeIndex` as well as `ComponentTypeIndex` for the two type index
  spaces in a component.

* A number of new sections are now processed to handle the core and
  component variants.

* Internal maps were split such as the `funcs` map into
  `component_funcs` and `funcs` (same for `instances`).

* Canonical options are now processed individually instead of one bulk
  `into` definition.

Overall this was not a major update to the internals of handling the
component model in Wasmtime. Instead this was mostly a surface-level
refactoring to make sure that everything lines up with the new binary
format for components.

* All text syntax used in tests was updated to the new syntax.
2022-06-09 11:16:07 -05:00
Alex Crichton
0b4448a423 Validate alignment in the canonical ABI (#4238)
This commit updates the lifting and lowering done by Wasmtime to
validate that alignment is all correct. Previously alignment was ignored
because I wasn't sure how this would all work out.

To be extra safe I haven't actually modified any loads/stores and
they're all still unaligned. If this becomes a performance issue we can
investigate aligned loads and stores but otherwise I believe the
requisite locations have been guarded with traps and I've also added
debug asserts to catch possible future mistakes.
2022-06-07 13:34:34 -05:00
Alex Crichton
3ed6fae7b3 Add trampoline compilation support for lowered imports (#4206)
* Add trampoline compilation support for lowered imports

This commit adds support to the component model implementation for
compiling trampolines suitable for calling host imports. Currently this
is purely just the compilation side of things, modifying the
wasmtime-cranelift crate and additionally filling out a new
`VMComponentOffsets` type (similar to `VMOffsets`). The actual creation
of a `VMComponentContext` is still not performed and will be a
subsequent PR.

Internally though some tests are actually possible with this where we at
least assert that compilation of a component and creation of everything
in-memory doesn't panic or trip any assertions, so some tests are added
here for that as well.

* Fix some test errors
2022-06-03 10:01:42 -05:00
Alex Crichton
140b83597b components: Implement the ability to call component exports (#4039)
* components: Implement the ability to call component exports

This commit is an implementation of the typed method of calling
component exports. This is intended to represent the most efficient way
of calling a component in Wasmtime, similar to what `TypedFunc`
represents today for core wasm.

Internally this contains all the traits and implementations necessary to
invoke component exports with any type signature (e.g. arbitrary
parameters and/or results). The expectation is that for results we'll
reuse all of this infrastructure except in reverse (arguments and
results will be swapped when defining imports).

Some features of this implementation are:

* Arbitrary type hierarchies are supported
* The Rust-standard `Option`, `Result`, `String`, `Vec<T>`, and tuple
  types all map down to the corresponding type in the component model.
* Basic utf-16 string support is implemented as proof-of-concept to show
  what handling might look like. This will need further testing and
  benchmarking.
* Arguments can be behind "smart pointers", so for example
  `&Rc<Arc<[u8]>>` corresponds to `list<u8>` in interface types.
* Bulk copies from linear memory never happen unless explicitly
  instructed to do so.

The goal of this commit is to create the ability to actually invoke wasm
components. This represents what is expected to be the performance
threshold for these calls where it ideally should be optimal how
WebAssembly is invoked. One major missing piece of this is a `#[derive]`
of some sort to generate Rust types for arbitrary `*.wit` types such as
custom records, variants, flags, unions, etc. The current trait impls
for tuples and `Result<T, E>` are expected to have fleshed out most of
what such a derive would look like.

There are some downsides and missing pieces to this commit and method of
calling components, however, such as:

* Passing `&[u8]` to WebAssembly is currently not optimal. Ideally this
  compiles down to a `memcpy`-equivalent somewhere but that currently
  doesn't happen due to all the bounds checks of copying data into
  memory. I have been unsuccessful so far at getting these bounds checks
  to be removed.
* There is no finalization at this time (the "post return" functionality
  in the canonical ABI). Implementing this should be relatively
  straightforward but at this time requires `wasmparser` changes to
  catch up with the current canonical ABI.
* There is no guarantee that results of a wasm function will be
  validated. As results are consumed they are validated but this means
  that if function returns an invalid string which the host doesn't look
  at then no trap will be generated. This is probably not the intended
  semantics of hosts in the component model.
* At this time there's no support for memory64 memories, just a bunch of
  `FIXME`s to get around to. It's expected that this won't be too
  onerous, however. Some extra care will need to ensure that the various
  methods related to size/alignment all optimize to the same thing they
  do today (e.g. constants).
* The return value of a typed component function is either `T` or
  `Value<T>`, and it depends on the ABI details of `T` and whether it
  takes up more than one return value slot or not. This is an
  ABI-implementation detail which is being forced through to the API
  layer which is pretty unfortunate. For example if you say the return
  value of a function is `(u8, u32)` then it's a runtime type-checking
  error. I don't know of a great way to solve this at this time.

Overall I'm feeling optimistic about this trajectory of implementing
value lifting/lowering in Wasmtime. While there are a number of
downsides none seem completely insurmountable. There's naturally still a
good deal of work with the component model but this should be a
significant step up towards implementing and testing the component model.

* Review comments

* Write tests for calling functions

This commit adds a new test file for actually executing functions and
testing their results. This is not written as a `*.wast` test yet since
it's not 100% clear if that's the best way to do that for now (given
that dynamic signatures aren't supported yet). The tests themselves
could all largely be translated to `*.wast` testing in the future,
though, if supported.

Along the way a number of minor issues were fixed with lowerings with
the bugs exposed here.

* Fix an endian mistake

* Fix a typo and the `memory.fill` instruction
2022-05-24 17:02:31 -05:00
Alex Crichton
fcf6208750 Initial skeleton of some component model processing (#4005)
* Initial skeleton of some component model processing

This commit is the first of what will likely be many to implement the
component model proposal in Wasmtime. This will be structured as a
series of incremental commits, most of which haven't been written yet.
My hope is to make this incremental and over time to make this easier to
review and easier to test each step in isolation.

Here much of the skeleton of how components are going to work in
Wasmtime is sketched out. This is not a complete implementation of the
component model so it's not all that useful yet, but some things you can
do are:

* Process the type section into a representation amenable for working
  with in Wasmtime.
* Process the module section and register core wasm modules.
* Process the instance section for core wasm modules.
* Process core wasm module imports.
* Process core wasm instance aliasing.
* Ability to compile a component with core wasm embedded.
* Ability to instantiate a component with no imports.
* Ability to get functions from this component.

This is already starting to diverge from the previous module linking
representation where a `Component` will try to avoid unnecessary
metadata about the component and instead internally only have the bare
minimum necessary to instantiate the module. My hope is we can avoid
constructing most of the index spaces during instantiation only for it
to all ge thrown away. Additionally I'm predicting that we'll need to
see through processing where possible to know how to generate adapters
and where they are fused.

At this time you can't actually call a component's functions, and that's
the next PR that I would like to make.

* Add tests for the component model support

This commit uses the recently updated wasm-tools crates to add tests for
the component model added in the previous commit. This involved updating
the `wasmtime-wast` crate for component-model changes. Currently the
component support there is quite primitive, but enough to at least
instantiate components and verify the internals of Wasmtime are all
working correctly. Additionally some simple tests for the embedding API
have also been added.
2022-05-20 15:33:18 -05:00