5a006674c39b5003128b78bc9a92f8edc99ae45c
36 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
2afaac5181 |
Return anyhow::Error from host functions instead of Trap, redesign Trap (#5149)
* Return `anyhow::Error` from host functions instead of `Trap` This commit refactors how errors are modeled when returned from host functions and additionally refactors how custom errors work with `Trap`. At a high level functions in Wasmtime that previously worked with `Result<T, Trap>` now work with `Result<T>` instead where the error is `anyhow::Error`. This includes functions such as: * Host-defined functions in a `Linker<T>` * `TypedFunc::call` * Host-related callbacks like call hooks Errors are now modeled primarily as `anyhow::Error` throughout Wasmtime. This subsequently removes the need for `Trap` to have the ability to represent all host-defined errors as it previously did. Consequently the `From` implementations for any error into a `Trap` have been removed here and the only embedder-defined way to create a `Trap` is to use `Trap::new` with a custom string. After this commit the distinction between a `Trap` and a host error is the wasm backtrace that it contains. Previously all errors in host functions would flow through a `Trap` and get a wasm backtrace attached to them, but now this only happens if a `Trap` itself is created meaning that arbitrary host-defined errors flowing from a host import to the other side won't get backtraces attached. Some internals of Wasmtime itself were updated or preserved to use `Trap::new` to capture a backtrace where it seemed useful, such as when fuel runs out. The main motivation for this commit is that it now enables hosts to thread a concrete error type from a host function all the way through to where a wasm function was invoked. Previously this could not be done since the host error was wrapped in a `Trap` that didn't provide the ability to get at the internals. A consequence of this commit is that when a host error is returned that isn't a `Trap` we'll capture a backtrace and then won't have a `Trap` to attach it to. To avoid losing the contextual information this commit uses the `Error::context` method to attach the backtrace as contextual information to ensure that the backtrace is itself not lost. This is a breaking change for likely all users of Wasmtime, but it's hoped to be a relatively minor change to workaround. Most use cases can likely change `-> Result<T, Trap>` to `-> Result<T>` and otherwise explicit creation of a `Trap` is largely no longer necessary. * Fix some doc links * add some tests and make a backtrace type public (#55) * Trap: avoid a trailing newline in the Display impl which in turn ends up with three newlines between the end of the backtrace and the `Caused by` in the anyhow Debug impl * make BacktraceContext pub, and add tests showing downcasting behavior of anyhow::Error to traps or backtraces * Remove now-unnecesary `Trap` downcasts in `Linker::module` * Fix test output expectations * Remove `Trap::i32_exit` This commit removes special-handling in the `wasmtime::Trap` type for the i32 exit code required by WASI. This is now instead modeled as a specific `I32Exit` error type in the `wasmtime-wasi` crate which is returned by the `proc_exit` hostcall. Embedders which previously tested for i32 exits now downcast to the `I32Exit` value. * Remove the `Trap::new` constructor This commit removes the ability to create a trap with an arbitrary error message. The purpose of this commit is to continue the prior trend of leaning into the `anyhow::Error` type instead of trying to recreate it with `Trap`. A subsequent simplification to `Trap` after this commit is that `Trap` will simply be an `enum` of trap codes with no extra information. This commit is doubly-motivated by the desire to always use the new `BacktraceContext` type instead of sometimes using that and sometimes using `Trap`. Most of the changes here were around updating `Trap::new` calls to `bail!` calls instead. Tests which assert particular error messages additionally often needed to use the `:?` formatter instead of the `{}` formatter because the prior formats the whole `anyhow::Error` and the latter only formats the top-most error, which now contains the backtrace. * Merge `Trap` and `TrapCode` With prior refactorings there's no more need for `Trap` to be opaque or otherwise contain a backtrace. This commit parse down `Trap` to simply an `enum` which was the old `TrapCode`. All various tests and such were updated to handle this. The main consequence of this commit is that all errors have a `BacktraceContext` context attached to them. This unfortunately means that the backtrace is printed first before the error message or trap code, but given all the prior simplifications that seems worth it at this time. * Rename `BacktraceContext` to `WasmBacktrace` This feels like a better name given how this has turned out, and additionally this commit removes having both `WasmBacktrace` and `BacktraceContext`. * Soup up documentation for errors and traps * Fix build of the C API Co-authored-by: Pat Hickey <pat@moreproductive.org> |
||
|
|
cd53bed898 |
Implement AOT compilation for components (#5160)
* Pull `Module` out of `ModuleTextBuilder` This commit is the first in what will likely be a number towards preparing for serializing a compiled component to bytes, a precompiled artifact. To that end my rough plan is to merge all of the compiled artifacts for a component into one large object file instead of having lots of separate object files and lots of separate mmaps to manage. To that end I plan on eventually using `ModuleTextBuilder` to build one large text section for all core wasm modules and trampolines, meaning that `ModuleTextBuilder` is no longer specific to one module. I've extracted out functionality such as function name calculation as well as relocation resolving (now a closure passed in) in preparation for this. For now this just keeps tests passing, and the trajectory for this should become more clear over the following commits. * Remove component-specific object emission This commit removes the `ComponentCompiler::emit_obj` function in favor of `Compiler::emit_obj`, now renamed `append_code`. This involved significantly refactoring code emission to take a flat list of functions into `append_code` and the caller is responsible for weaving together various "families" of functions and un-weaving them afterwards. * Consolidate ELF parsing in `CodeMemory` This commit moves the ELF file parsing and section iteration from `CompiledModule` into `CodeMemory` so one location keeps track of section ranges and such. This is in preparation for sharing much of this code with components which needs all the same sections to get tracked but won't be using `CompiledModule`. A small side benefit from this is that the section parsing done in `CodeMemory` and `CompiledModule` is no longer duplicated. * Remove separately tracked traps in components Previously components would generate an "always trapping" function and the metadata around which pc was allowed to trap was handled manually for components. With recent refactorings the Wasmtime-standard trap section in object files is now being generated for components as well which means that can be reused instead of custom-tracking this metadata. This commit removes the manual tracking for the `always_trap` functions and plumbs the necessary bits around to make components look more like modules. * Remove a now-unnecessary `Arc` in `Module` Not expected to have any measurable impact on performance, but complexity-wise this should make it a bit easier to understand the internals since there's no longer any need to store this somewhere else than its owner's location. * Merge compilation artifacts of components This commit is a large refactoring of the component compilation process to produce a single artifact instead of multiple binary artifacts. The core wasm compilation process is refactored as well to share as much code as necessary with the component compilation process. This method of representing a compiled component necessitated a few medium-sized changes internally within Wasmtime: * A new data structure was created, `CodeObject`, which represents metadata about a single compiled artifact. This is then stored as an `Arc` within a component and a module. For `Module` this is always uniquely owned and represents a shuffling around of data from one owner to another. For a `Component`, however, this is shared amongst all loaded modules and the top-level component. * The "module registry" which is used for symbolicating backtraces and for trap information has been updated to account for a single region of loaded code holding possibly multiple modules. This involved adding a second-level `BTreeMap` for now. This will likely slow down instantiation slightly but if it poses an issue in the future this should be able to be represented with a more clever data structure. This commit additionally solves a number of longstanding issues with components such as compiling only one host-to-wasm trampoline per signature instead of possibly once-per-module. Additionally the `SignatureCollection` registration now happens once-per-component instead of once-per-module-within-a-component. * Fix compile errors from prior commits * Support AOT-compiling components This commit adds support for AOT-compiled components in the same manner as `Module`, specifically adding: * `Engine::precompile_component` * `Component::serialize` * `Component::deserialize` * `Component::deserialize_file` Internally the support for components looks quite similar to `Module`. All the prior commits to this made adding the support here (unsurprisingly) easy. Components are represented as a single object file as are modules, and the functions for each module are all piled into the same object file next to each other (as are areas such as data sections). Support was also added here to quickly differentiate compiled components vs compiled modules via the `e_flags` field in the ELF header. * Prevent serializing exported modules on components The current representation of a module within a component means that the implementation of `Module::serialize` will not work if the module is exported from a component. The reason for this is that `serialize` doesn't actually do anything and simply returns the underlying mmap as a list of bytes. The mmap, however, has `.wasmtime.info` describing component metadata as opposed to this module's metadata. While rewriting this section could be implemented it's not so easy to do so and is otherwise seen as not super important of a feature right now anyway. * Fix windows build * Fix an unused function warning * Update crates/environ/src/compilation.rs Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com> Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com> |
||
|
|
12e4a1ba18 |
component model: async host function & embedding support (#5055)
* func_wrap_async typechecks
* func call async
* instantiate_async
* fixes
* async engine creation for tests
* start adding a component model test for async
* fix wrong check for async support, factor out Instance::new_started to an unchecked impl
* tests: wibbles
* component::Linker::func_wrap: replace IntoComponentFunc with directly accepting a closure
We find that this makes the Linker::func_wrap type signature much easier
to read. The IntoComponentFunc abstraction was adding a lot of weight to
"splat" a set of arguments from a tuple of types into individual
arguments to the closure. Additionally, making the StoreContextMut
argument optional, or the Result<return> optional, wasn't very
worthwhile.
* Fixes for the new style of closure required by component::Linker::func_wrap
* future of result of return
* add Linker::instantiate_async and {Typed}Func::post_return_async
* fix fuzzing generator
* note optimisation opportunity
* simplify test
|
||
|
|
78ecc17d0f |
unsplat component::Linker::func_wrap args (#5065)
* component::Linker::func_wrap: replace IntoComponentFunc with directly accepting a closure We find that this makes the Linker::func_wrap type signature much easier to read. The IntoComponentFunc abstraction was adding a lot of weight to "splat" a set of arguments from a tuple of types into individual arguments to the closure. Additionally, making the StoreContextMut argument optional, or the Result<return> optional, wasn't very worthwhile. * Fixes for the new style of closure required by component::Linker::func_wrap * fix fuzzing generator |
||
|
|
29c7de7340 |
Update wasm-tools dependencies (#4970)
* Update wasm-tools dependencies This update brings in a number of features such as: * The component model binary format and AST has been slightly adjusted in a few locations. Names are dropped from parameters/results now in the internal representation since they were not used anyway. At this time the ability to bind a multi-return function has not been exposed. * The `wasmparser` validator pass will now share allocations with prior functions, providing what's probably a very minor speedup for Wasmtime itself. * The text format for many component-related tests now requires named parameters. * Some new relaxed-simd instructions are updated to be ignored. I hope to have a follow-up to expose the multi-return ability to the embedding API of components. * Update audit information for new crates |
||
|
|
57dca934ad |
Upgrade wasm-tools crates, namely the component model (#4715)
* Upgrade wasm-tools crates, namely the component model This commit pulls in the latest versions of all of the `wasm-tools` family of crates. There were two major changes that happened in `wasm-tools` in the meantime: * bytecodealliance/wasm-tools#697 - this commit introduced a new API for more efficiently reading binary operators from a wasm binary. The old `Operator`-based reading was left in place, however, and continues to be what Wasmtime uses. I hope to update Wasmtime in a future PR to use this new API, but for now the biggest change is... * bytecodealliance/wasm-tools#703 - this commit was a major update to the component model AST. This commit almost entirely deals with the fallout of this change. The changes made to the component model were: 1. The `unit` type no longer exists. This was generally a simple change where the `Unit` case in a few different locations were all removed. 2. The `expected` type was renamed to `result`. This similarly was relatively lightweight and mostly just a renaming on the surface. I took this opportunity to rename `val::Result` to `val::ResultVal` and `types::Result` to `types::ResultType` to avoid clashing with the standard library types. The `Option`-based types were handled with this as well. 3. The payload type of `variant` and `result` types are now optional. This affected many locations that calculate flat type representations, ABI information, etc. The `#[derive(ComponentType)]` macro now specifically handles Rust-defined `enum` types which have no payload to the equivalent in the component model. 4. Functions can now return multiple parameters. This changed the signature of invoking component functions because the return value is now bound by `ComponentNamedList` (renamed from `ComponentParams`). This had a large effect in the tests, fuzz test case generation, etc. 5. Function types with 2-or-more parameters/results must uniquely name all parameters/results. This mostly affected the text format used throughout the tests. I haven't added specifically new tests for multi-return but I changed a number of tests to use it. Additionally I've updated the fuzzers to all exercise multi-return as well so I think we should get some good coverage with that. * Update version numbers * Use crates.io |
||
|
|
867f5c1244 |
Update behavior of zero-length lists/strings (#4648)
The spec was expected to change to not bounds-check 0-byte lists/strings but has since been updated to match `memory.copy` which does indeed check the pointer for 0-byte copies. |
||
|
|
650979ae40 |
Implement strings in adapter modules (#4623)
* Implement strings in adapter modules This commit is a hefty addition to Wasmtime's support for the component model. This implements the final remaining type (in the current type hierarchy) unimplemented in adapter module trampolines: strings. Strings are the most complicated type to implement in adapter trampolines because they are highly structured chunks of data in memory (according to specific encodings). Additionally each lift/lower operation can choose its own encoding for strings meaning that Wasmtime, the host, may have to convert between any pairwise ordering of string encodings. The `CanonicalABI.md` in the component-model repo in general specifies all the fiddly bits of string encoding so there's not a ton of wiggle room for Wasmtime to get creative. This PR largely "just" implements that. The high-level architecture of this implementation is: * Fused adapters are first identified to determine src/dst string encodings. This statically fixes what transcoding operation is being performed. * The generated adapter will be responsible for managing calls to `realloc` and performing bounds checks. The adapter itself does not perform memory copies or validation of string contents, however. Instead each transcoding operation is modeled as an imported function into the adapter module. This means that the adapter module dynamically, during compile time, determines what string transcoders are needed. Note that an imported transcoder is not only parameterized over the transcoding operation but additionally which memory is the source and which is the destination. * The imported core wasm functions are modeled as a new `CoreDef::Transcoder` structure. These transcoders end up being small Cranelift-compiled trampolines. The Cranelift-compiled trampoline will load the actual base pointer of memory and add it to the relative pointers passed as function arguments. This trampoline then calls a transcoder "libcall" which enters Rust-defined functions for actual transcoding operations. * Each possible transcoding operation is implemented in Rust with a unique name and a unique signature depending on the needs of the transcoder. I've tried to document inline what each transcoder does. This means that the `Module::translate_string` in adapter modules is by far the largest translation method. The main reason for this is due to the management around calling the imported transcoder functions in the face of validating string pointer/lengths and performing the dance of `realloc`-vs-transcode at the right time. I've tried to ensure that each individual case in transcoding is documented well enough to understand what's going on as well. Additionally in this PR is a full implementation in the host for the `latin1+utf16` encoding which means that both lifting and lowering host strings now works with this encoding. Currently the implementation of each transcoder function is likely far from optimal. Where possible I've leaned on the standard library itself and for latin1-related things I'm leaning on the `encoding_rs` crate. I initially tried to implement everything with `encoding_rs` but was unable to uniformly do so easily. For now I settled on trying to get a known-correct (even in the face of endianness) implementation for all of these transcoders. If an when performance becomes an issue it should be possible to implement more optimized versions of each of these transcoding operations. Testing this commit has been somewhat difficult and my general plan, like with the `(list T)` type, is to rely heavily on fuzzing to cover the various cases here. In this PR though I've added a simple test that pushes some statically known strings through all the pairs of encodings between source and destination. I've attempted to pick "interesting" strings that one way or another stress the various paths in each transcoding operation to ideally get full branch coverage there. Additionally a suite of "negative" tests have also been added to ensure that validity of encoding is actually checked. * Fix a temporarily commented out case * Fix wasmtime-runtime tests * Update deny.toml configuration * Add `BSD-3-Clause` for the `encoding_rs` crate * Remove some unused licenses * Add an exemption for `encoding_rs` for now * Split up the `translate_string` method Move out all the closures and package up captured state into smaller lists of arguments. * Test out-of-bounds for zero-length strings |
||
|
|
ed8908efcf |
implement fuzzing for component types (#4537)
This addresses #4307. For the static API we generate 100 arbitrary test cases at build time, each of which includes 0-5 parameter types, a result type, and a WAT fragment containing an imported function and an exported function. The exported function calls the imported function, which is implemented by the host. At runtime, the fuzz test selects a test case at random and feeds it zero or more sets of arbitrary parameters and results, checking that values which flow host-to-guest and guest-to-host make the transition unchanged. The fuzz test for the dynamic API follows a similar pattern, the only difference being that test cases are generated at runtime. Signed-off-by: Joel Dice <joel.dice@fermyon.com> |
||
|
|
70ce288dc7 |
Save exit Wasm FP and PC in component-to-host trampolines (#4601)
* Wasmtime: Add a pointer to `VMRuntimeLimits` in component contexts * Save exit Wasm FP and PC in component-to-host trampolines Fixes #4535 * Add comment about why we deref the trampoline's FP * Update some tests to use new `vmruntime_limits_*` methods |
||
|
|
fb59de15af |
Implement fused adapters for (list T) types (#4558)
* Implement fused adapters for `(list T)` types This commit implements one of the two remaining types for adapter fusion, lists. This implementation is particularly tricky for a number of reasons: * Lists have a number of validity checks which need to be carefully implemented. For example the byte length of the list passed to allocation in the destination module could overflow the 32-bit index space. Additionally lists in 32-bit memories need a check that their final address is in-bounds in the address space. * In the effort to go ahead and support memory64 at the lowest layers this is where much of the magic happens. Lists are naturally always stored in memory and shifting between 64/32-bit address spaces is done here. This notably required plumbing an `Options` around during flattening/size/alignment calculations due to the size/types of lists changing depending on the memory configuration. I've also added a small `factc` program in this commit which should hopefully assist in exploring and debugging adapter modules. This takes as input a component (text or binary format) and then generates an adapter module for all component function signatures found internally. This commit notably does not include tests for lists. I tried to figure out a good way to add these but I felt like there were too many cases to test and the tests would otherwise be extremely verbose. Instead I think the best testing strategy for this commit will be through #4537 which should be relatively extensible to testing adapters between modules in addition to host-based lifting/lowering. * Improve handling of lists of 0-size types * Skip overflow checks on byte sizes for 0-size types * Skip the copy loop entirely when src/dst are both 0 * Skip the increments of src/dst pointers if either is 0-size * Update semantics for zero-sized lists/strings When a list/string has a 0-byte-size the base pointer is no longer verified to be in-bounds to match the supposedly desired adapter semantics where no trap happens because no turn of the loop happens. |
||
|
|
893fadb485 |
components: Fix support for 0-sized flags (#4560)
This commit goes through and updates support in the various argument passing routines to support 0-sized flags. A bit of a degenerate case but clarified in WebAssembly/component-model#76 as intentional. |
||
|
|
46782b18c2 |
wasmtime: Implement fast Wasm stack walking (#4431)
* Always preserve frame pointers in Wasmtime
This allows us to efficiently and simply capture Wasm stacks without maintaining
and synchronizing any safety-critical side tables between the compiler and the
runtime.
* wasmtime: Implement fast Wasm stack walking
Why do we want Wasm stack walking to be fast? Because we capture stacks whenever
there is a trap and traps actually happen fairly frequently with short-lived
programs and WASI's `exit`.
Previously, we would rely on generating the system unwind info (e.g.
`.eh_frame`) and using the system unwinder (via the `backtrace`crate) to walk
the full stack and filter out any non-Wasm stack frames. This can,
unfortunately, be slow for two primary reasons:
1. The system unwinder is doing `O(all-kinds-of-frames)` work rather than
`O(wasm-frames)` work.
2. System unwind info and the system unwinder need to be much more general than
a purpose-built stack walker for Wasm needs to be. It has to handle any kind of
stack frame that any compiler might emit where as our Wasm frames are emitted by
Cranelift and always have frame pointers. This translates into implementation
complexity and general overhead. There can also be unnecessary-for-our-use-cases
global synchronization and locks involved, further slowing down stack walking in
the presence of multiple threads trying to capture stacks in parallel.
This commit introduces a purpose-built stack walker for traversing just our Wasm
frames. To find all the sequences of Wasm-to-Wasm stack frames, and ignore
non-Wasm stack frames, we keep a linked list of `(entry stack pointer, exit
frame pointer)` pairs. This linked list is maintained via Wasm-to-host and
host-to-Wasm trampolines. Within a sequence of Wasm-to-Wasm calls, we can use
frame pointers (which Cranelift preserves) to find the next older Wasm frame on
the stack, and we keep doing this until we reach the entry stack pointer,
meaning that the next older frame will be a host frame.
The trampolines need to avoid a couple stumbling blocks. First, they need to be
compiled ahead of time, since we may not have access to a compiler at
runtime (e.g. if the `cranelift` feature is disabled) but still want to be able
to call functions that have already been compiled and get stack traces for those
functions. Usually this means we would compile the appropriate trampolines
inside `Module::new` and the compiled module object would hold the
trampolines. However, we *also* need to support calling host functions that are
wrapped into `wasmtime::Func`s and there doesn't exist *any* ahead-of-time
compiled module object to hold the appropriate trampolines:
```rust
// Define a host function.
let func_type = wasmtime::FuncType::new(
vec![wasmtime::ValType::I32],
vec![wasmtime::ValType::I32],
);
let func = Func::new(&mut store, func_type, |_, params, results| {
// ...
Ok(())
});
// Call that host function.
let mut results = vec![wasmtime::Val::I32(0)];
func.call(&[wasmtime::Val::I32(0)], &mut results)?;
```
Therefore, we define one host-to-Wasm trampoline and one Wasm-to-host trampoline
in assembly that work for all Wasm and host function signatures. These
trampolines are careful to only use volatile registers, avoid touching any
register that is an argument in the calling convention ABI, and tail call to the
target callee function. This allows forwarding any set of arguments and any
returns to and from the callee, while also allowing us to maintain our linked
list of Wasm stack and frame pointers before transferring control to the
callee. These trampolines are not used in Wasm-to-Wasm calls, only when crossing
the host-Wasm boundary, so they do not impose overhead on regular calls. (And if
using one trampoline for all host-Wasm boundary crossing ever breaks branch
prediction enough in the CPU to become any kind of bottleneck, we can do fun
things like have multiple copies of the same trampoline and choose a random copy
for each function, sharding the functions across branch predictor entries.)
Finally, this commit also ends the use of a synthetic `Module` and allocating a
stubbed out `VMContext` for host functions. Instead, we define a
`VMHostFuncContext` with its own magic value, similar to `VMComponentContext`,
specifically for host functions.
<h2>Benchmarks</h2>
<h3>Traps and Stack Traces</h3>
Large improvements to taking stack traces on traps, ranging from shaving off 64%
to 99.95% of the time it used to take.
<details>
```
multi-threaded-traps/0 time: [2.5686 us 2.5808 us 2.5934 us]
thrpt: [0.0000 elem/s 0.0000 elem/s 0.0000 elem/s]
change:
time: [-85.419% -85.153% -84.869%] (p = 0.00 < 0.05)
thrpt: [+560.90% +573.56% +585.84%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
multi-threaded-traps/1 time: [2.9021 us 2.9167 us 2.9322 us]
thrpt: [341.04 Kelem/s 342.86 Kelem/s 344.58 Kelem/s]
change:
time: [-91.455% -91.294% -91.096%] (p = 0.00 < 0.05)
thrpt: [+1023.1% +1048.6% +1070.3%]
Performance has improved.
Found 6 outliers among 100 measurements (6.00%)
1 (1.00%) high mild
5 (5.00%) high severe
multi-threaded-traps/2 time: [2.9996 us 3.0145 us 3.0295 us]
thrpt: [660.18 Kelem/s 663.47 Kelem/s 666.76 Kelem/s]
change:
time: [-94.040% -93.910% -93.762%] (p = 0.00 < 0.05)
thrpt: [+1503.1% +1542.0% +1578.0%]
Performance has improved.
Found 5 outliers among 100 measurements (5.00%)
5 (5.00%) high severe
multi-threaded-traps/4 time: [5.5768 us 5.6052 us 5.6364 us]
thrpt: [709.68 Kelem/s 713.63 Kelem/s 717.25 Kelem/s]
change:
time: [-93.193% -93.121% -93.052%] (p = 0.00 < 0.05)
thrpt: [+1339.2% +1353.6% +1369.1%]
Performance has improved.
multi-threaded-traps/8 time: [8.6408 us 9.1212 us 9.5438 us]
thrpt: [838.24 Kelem/s 877.08 Kelem/s 925.84 Kelem/s]
change:
time: [-94.754% -94.473% -94.202%] (p = 0.00 < 0.05)
thrpt: [+1624.7% +1709.2% +1806.1%]
Performance has improved.
multi-threaded-traps/16 time: [10.152 us 10.840 us 11.545 us]
thrpt: [1.3858 Melem/s 1.4760 Melem/s 1.5761 Melem/s]
change:
time: [-97.042% -96.823% -96.577%] (p = 0.00 < 0.05)
thrpt: [+2821.5% +3048.1% +3281.1%]
Performance has improved.
Found 1 outliers among 100 measurements (1.00%)
1 (1.00%) high mild
many-modules-registered-traps/1
time: [2.6278 us 2.6361 us 2.6447 us]
thrpt: [378.11 Kelem/s 379.35 Kelem/s 380.55 Kelem/s]
change:
time: [-85.311% -85.108% -84.909%] (p = 0.00 < 0.05)
thrpt: [+562.65% +571.51% +580.76%]
Performance has improved.
Found 9 outliers among 100 measurements (9.00%)
3 (3.00%) high mild
6 (6.00%) high severe
many-modules-registered-traps/8
time: [2.6294 us 2.6460 us 2.6623 us]
thrpt: [3.0049 Melem/s 3.0235 Melem/s 3.0425 Melem/s]
change:
time: [-85.895% -85.485% -85.022%] (p = 0.00 < 0.05)
thrpt: [+567.63% +588.95% +608.95%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
3 (3.00%) high mild
5 (5.00%) high severe
many-modules-registered-traps/64
time: [2.6218 us 2.6329 us 2.6452 us]
thrpt: [24.195 Melem/s 24.308 Melem/s 24.411 Melem/s]
change:
time: [-93.629% -93.551% -93.470%] (p = 0.00 < 0.05)
thrpt: [+1431.4% +1450.6% +1469.5%]
Performance has improved.
Found 3 outliers among 100 measurements (3.00%)
3 (3.00%) high mild
many-modules-registered-traps/512
time: [2.6569 us 2.6737 us 2.6923 us]
thrpt: [190.17 Melem/s 191.50 Melem/s 192.71 Melem/s]
change:
time: [-99.277% -99.268% -99.260%] (p = 0.00 < 0.05)
thrpt: [+13417% +13566% +13731%]
Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
4 (4.00%) high mild
many-modules-registered-traps/4096
time: [2.7258 us 2.7390 us 2.7535 us]
thrpt: [1.4876 Gelem/s 1.4955 Gelem/s 1.5027 Gelem/s]
change:
time: [-99.956% -99.955% -99.955%] (p = 0.00 < 0.05)
thrpt: [+221417% +223380% +224881%]
Performance has improved.
Found 2 outliers among 100 measurements (2.00%)
1 (1.00%) high mild
1 (1.00%) high severe
many-stack-frames-traps/1
time: [1.4658 us 1.4719 us 1.4784 us]
thrpt: [676.39 Kelem/s 679.38 Kelem/s 682.21 Kelem/s]
change:
time: [-90.368% -89.947% -89.586%] (p = 0.00 < 0.05)
thrpt: [+860.23% +894.72% +938.21%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
5 (5.00%) high mild
3 (3.00%) high severe
many-stack-frames-traps/8
time: [2.4772 us 2.4870 us 2.4973 us]
thrpt: [3.2034 Melem/s 3.2167 Melem/s 3.2294 Melem/s]
change:
time: [-85.550% -85.370% -85.199%] (p = 0.00 < 0.05)
thrpt: [+575.65% +583.51% +592.03%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
many-stack-frames-traps/64
time: [10.109 us 10.171 us 10.236 us]
thrpt: [6.2525 Melem/s 6.2925 Melem/s 6.3309 Melem/s]
change:
time: [-78.144% -77.797% -77.336%] (p = 0.00 < 0.05)
thrpt: [+341.22% +350.38% +357.55%]
Performance has improved.
Found 7 outliers among 100 measurements (7.00%)
5 (5.00%) high mild
2 (2.00%) high severe
many-stack-frames-traps/512
time: [126.16 us 126.54 us 126.96 us]
thrpt: [4.0329 Melem/s 4.0461 Melem/s 4.0583 Melem/s]
change:
time: [-65.364% -64.933% -64.453%] (p = 0.00 < 0.05)
thrpt: [+181.32% +185.17% +188.71%]
Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
4 (4.00%) high severe
```
</details>
<h3>Calls</h3>
There is, however, a small regression in raw Wasm-to-host and host-to-Wasm call
performance due the new trampolines. It seems to be on the order of about 2-10
nanoseconds per call, depending on the benchmark.
I believe this regression is ultimately acceptable because
1. this overhead will be vastly dominated by whatever work a non-nop callee
actually does,
2. we will need these trampolines, or something like them, when implementing the
Wasm exceptions proposal to do things like translate Wasm's exceptions into
Rust's `Result`s,
3. and because the performance improvements to trapping and capturing stack
traces are of such a larger magnitude than this call regressions.
<details>
```
sync/no-hook/host-to-wasm - typed - nop
time: [28.683 ns 28.757 ns 28.844 ns]
change: [+16.472% +17.183% +17.904%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
1 (1.00%) low mild
4 (4.00%) high mild
5 (5.00%) high severe
sync/no-hook/host-to-wasm - untyped - nop
time: [42.515 ns 42.652 ns 42.841 ns]
change: [+12.371% +14.614% +17.462%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
1 (1.00%) high mild
10 (10.00%) high severe
sync/no-hook/host-to-wasm - unchecked - nop
time: [33.936 ns 34.052 ns 34.179 ns]
change: [+25.478% +26.938% +28.369%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
7 (7.00%) high mild
2 (2.00%) high severe
sync/no-hook/host-to-wasm - typed - nop-params-and-results
time: [34.290 ns 34.388 ns 34.502 ns]
change: [+40.802% +42.706% +44.526%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
5 (5.00%) high mild
8 (8.00%) high severe
sync/no-hook/host-to-wasm - untyped - nop-params-and-results
time: [62.546 ns 62.721 ns 62.919 ns]
change: [+2.5014% +3.6319% +4.8078%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
2 (2.00%) high mild
10 (10.00%) high severe
sync/no-hook/host-to-wasm - unchecked - nop-params-and-results
time: [42.609 ns 42.710 ns 42.831 ns]
change: [+20.966% +22.282% +23.475%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
4 (4.00%) high mild
7 (7.00%) high severe
sync/hook-sync/host-to-wasm - typed - nop
time: [29.546 ns 29.675 ns 29.818 ns]
change: [+20.693% +21.794% +22.836%] (p = 0.00 < 0.05)
Performance has regressed.
Found 5 outliers among 100 measurements (5.00%)
3 (3.00%) high mild
2 (2.00%) high severe
sync/hook-sync/host-to-wasm - untyped - nop
time: [45.448 ns 45.699 ns 45.961 ns]
change: [+17.204% +18.514% +19.590%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
4 (4.00%) high mild
10 (10.00%) high severe
sync/hook-sync/host-to-wasm - unchecked - nop
time: [34.334 ns 34.437 ns 34.558 ns]
change: [+23.225% +24.477% +25.886%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
5 (5.00%) high mild
7 (7.00%) high severe
sync/hook-sync/host-to-wasm - typed - nop-params-and-results
time: [36.594 ns 36.763 ns 36.974 ns]
change: [+41.967% +47.261% +52.086%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
3 (3.00%) high mild
9 (9.00%) high severe
sync/hook-sync/host-to-wasm - untyped - nop-params-and-results
time: [63.541 ns 63.831 ns 64.194 ns]
change: [-4.4337% -0.6855% +2.7134%] (p = 0.73 > 0.05)
No change in performance detected.
Found 8 outliers among 100 measurements (8.00%)
6 (6.00%) high mild
2 (2.00%) high severe
sync/hook-sync/host-to-wasm - unchecked - nop-params-and-results
time: [43.968 ns 44.169 ns 44.437 ns]
change: [+18.772% +21.802% +24.623%] (p = 0.00 < 0.05)
Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
3 (3.00%) high mild
12 (12.00%) high severe
async/no-hook/host-to-wasm - typed - nop
time: [4.9612 us 4.9743 us 4.9889 us]
change: [+9.9493% +11.911% +13.502%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
6 (6.00%) high mild
4 (4.00%) high severe
async/no-hook/host-to-wasm - untyped - nop
time: [5.0030 us 5.0211 us 5.0439 us]
change: [+10.841% +11.873% +12.977%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
3 (3.00%) high mild
7 (7.00%) high severe
async/no-hook/host-to-wasm - typed - nop-params-and-results
time: [4.9273 us 4.9468 us 4.9700 us]
change: [+4.7381% +6.8445% +8.8238%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
5 (5.00%) high mild
9 (9.00%) high severe
async/no-hook/host-to-wasm - untyped - nop-params-and-results
time: [5.1151 us 5.1338 us 5.1555 us]
change: [+9.5335% +11.290% +13.044%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
3 (3.00%) high mild
13 (13.00%) high severe
async/hook-sync/host-to-wasm - typed - nop
time: [4.9330 us 4.9394 us 4.9467 us]
change: [+10.046% +11.038% +12.035%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
5 (5.00%) high mild
7 (7.00%) high severe
async/hook-sync/host-to-wasm - untyped - nop
time: [5.0073 us 5.0183 us 5.0310 us]
change: [+9.3828% +10.565% +11.752%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
3 (3.00%) high mild
5 (5.00%) high severe
async/hook-sync/host-to-wasm - typed - nop-params-and-results
time: [4.9610 us 4.9839 us 5.0097 us]
change: [+9.0857% +11.513% +14.359%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
7 (7.00%) high mild
6 (6.00%) high severe
async/hook-sync/host-to-wasm - untyped - nop-params-and-results
time: [5.0995 us 5.1272 us 5.1617 us]
change: [+9.3600% +11.506% +13.809%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
6 (6.00%) high mild
4 (4.00%) high severe
async-pool/no-hook/host-to-wasm - typed - nop
time: [2.4242 us 2.4316 us 2.4396 us]
change: [+7.8756% +8.8803% +9.8346%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
5 (5.00%) high mild
3 (3.00%) high severe
async-pool/no-hook/host-to-wasm - untyped - nop
time: [2.5102 us 2.5155 us 2.5210 us]
change: [+12.130% +13.194% +14.270%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
4 (4.00%) high mild
8 (8.00%) high severe
async-pool/no-hook/host-to-wasm - typed - nop-params-and-results
time: [2.4203 us 2.4310 us 2.4440 us]
change: [+4.0380% +6.3623% +8.7534%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
5 (5.00%) high mild
9 (9.00%) high severe
async-pool/no-hook/host-to-wasm - untyped - nop-params-and-results
time: [2.5501 us 2.5593 us 2.5700 us]
change: [+8.8802% +10.976% +12.937%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
5 (5.00%) high mild
11 (11.00%) high severe
async-pool/hook-sync/host-to-wasm - typed - nop
time: [2.4135 us 2.4190 us 2.4254 us]
change: [+8.3640% +9.3774% +10.435%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
6 (6.00%) high mild
5 (5.00%) high severe
async-pool/hook-sync/host-to-wasm - untyped - nop
time: [2.5172 us 2.5248 us 2.5357 us]
change: [+11.543% +12.750% +13.982%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
1 (1.00%) high mild
7 (7.00%) high severe
async-pool/hook-sync/host-to-wasm - typed - nop-params-and-results
time: [2.4214 us 2.4353 us 2.4532 us]
change: [+1.5158% +5.0872% +8.6765%] (p = 0.00 < 0.05)
Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
2 (2.00%) high mild
13 (13.00%) high severe
async-pool/hook-sync/host-to-wasm - untyped - nop-params-and-results
time: [2.5499 us 2.5607 us 2.5748 us]
change: [+10.146% +12.459% +14.919%] (p = 0.00 < 0.05)
Performance has regressed.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
sync/no-hook/wasm-to-host - nop - typed
time: [6.6135 ns 6.6288 ns 6.6452 ns]
change: [+37.927% +38.837% +39.869%] (p = 0.00 < 0.05)
Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
2 (2.00%) high mild
5 (5.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - typed
time: [15.930 ns 15.993 ns 16.067 ns]
change: [+3.9583% +5.6286% +7.2430%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
11 (11.00%) high mild
1 (1.00%) high severe
sync/no-hook/wasm-to-host - nop - untyped
time: [20.596 ns 20.640 ns 20.690 ns]
change: [+4.3293% +5.2047% +6.0935%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
5 (5.00%) high mild
5 (5.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - untyped
time: [42.659 ns 42.882 ns 43.159 ns]
change: [-2.1466% -0.5079% +1.2554%] (p = 0.58 > 0.05)
No change in performance detected.
Found 15 outliers among 100 measurements (15.00%)
1 (1.00%) high mild
14 (14.00%) high severe
sync/no-hook/wasm-to-host - nop - unchecked
time: [10.671 ns 10.691 ns 10.713 ns]
change: [+83.911% +87.620% +92.062%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
2 (2.00%) high mild
7 (7.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - unchecked
time: [11.136 ns 11.190 ns 11.263 ns]
change: [-29.719% -28.446% -27.029%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
4 (4.00%) high mild
10 (10.00%) high severe
sync/hook-sync/wasm-to-host - nop - typed
time: [6.7964 ns 6.8087 ns 6.8226 ns]
change: [+21.531% +24.206% +27.331%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
4 (4.00%) high mild
10 (10.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - typed
time: [15.865 ns 15.921 ns 15.985 ns]
change: [+4.8466% +6.3330% +7.8317%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
3 (3.00%) high mild
13 (13.00%) high severe
sync/hook-sync/wasm-to-host - nop - untyped
time: [21.505 ns 21.587 ns 21.677 ns]
change: [+8.0908% +9.1943% +10.254%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - untyped
time: [44.018 ns 44.128 ns 44.261 ns]
change: [-1.4671% -0.0458% +1.2443%] (p = 0.94 > 0.05)
No change in performance detected.
Found 14 outliers among 100 measurements (14.00%)
5 (5.00%) high mild
9 (9.00%) high severe
sync/hook-sync/wasm-to-host - nop - unchecked
time: [11.264 ns 11.326 ns 11.387 ns]
change: [+80.225% +81.659% +83.068%] (p = 0.00 < 0.05)
Performance has regressed.
Found 6 outliers among 100 measurements (6.00%)
3 (3.00%) high mild
3 (3.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - unchecked
time: [11.816 ns 11.865 ns 11.920 ns]
change: [-29.152% -28.040% -26.957%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
8 (8.00%) high mild
6 (6.00%) high severe
async/no-hook/wasm-to-host - nop - typed
time: [6.6221 ns 6.6385 ns 6.6569 ns]
change: [+43.618% +44.755% +45.965%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
6 (6.00%) high mild
7 (7.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - typed
time: [15.884 ns 15.929 ns 15.983 ns]
change: [+3.5987% +5.2053% +6.7846%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
3 (3.00%) high mild
13 (13.00%) high severe
async/no-hook/wasm-to-host - nop - untyped
time: [20.615 ns 20.702 ns 20.821 ns]
change: [+6.9799% +8.1212% +9.2819%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
2 (2.00%) high mild
8 (8.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - untyped
time: [41.956 ns 42.207 ns 42.521 ns]
change: [-4.3057% -2.7730% -1.2428%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
3 (3.00%) high mild
11 (11.00%) high severe
async/no-hook/wasm-to-host - nop - unchecked
time: [10.440 ns 10.474 ns 10.513 ns]
change: [+83.959% +85.826% +87.541%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
5 (5.00%) high mild
6 (6.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - unchecked
time: [11.476 ns 11.512 ns 11.554 ns]
change: [-29.857% -28.383% -26.978%] (p = 0.00 < 0.05)
Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
1 (1.00%) low mild
6 (6.00%) high mild
5 (5.00%) high severe
async/no-hook/wasm-to-host - nop - async-typed
time: [26.427 ns 26.478 ns 26.532 ns]
change: [+6.5730% +7.4676% +8.3983%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
2 (2.00%) high mild
7 (7.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - async-typed
time: [28.557 ns 28.693 ns 28.880 ns]
change: [+1.9099% +3.7332% +5.9731%] (p = 0.00 < 0.05)
Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
1 (1.00%) high mild
14 (14.00%) high severe
async/hook-sync/wasm-to-host - nop - typed
time: [6.7488 ns 6.7630 ns 6.7784 ns]
change: [+19.935% +22.080% +23.683%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
4 (4.00%) high mild
5 (5.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - typed
time: [15.928 ns 16.031 ns 16.149 ns]
change: [+5.5188% +6.9567% +8.3839%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
9 (9.00%) high mild
2 (2.00%) high severe
async/hook-sync/wasm-to-host - nop - untyped
time: [21.930 ns 22.114 ns 22.296 ns]
change: [+4.6674% +7.7588% +10.375%] (p = 0.00 < 0.05)
Performance has regressed.
Found 4 outliers among 100 measurements (4.00%)
3 (3.00%) high mild
1 (1.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - untyped
time: [42.684 ns 42.858 ns 43.081 ns]
change: [-5.2957% -3.4693% -1.6217%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
2 (2.00%) high mild
12 (12.00%) high severe
async/hook-sync/wasm-to-host - nop - unchecked
time: [11.026 ns 11.053 ns 11.086 ns]
change: [+70.751% +72.378% +73.961%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
5 (5.00%) high mild
5 (5.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - unchecked
time: [11.840 ns 11.900 ns 11.982 ns]
change: [-27.977% -26.584% -24.887%] (p = 0.00 < 0.05)
Performance has improved.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
async/hook-sync/wasm-to-host - nop - async-typed
time: [27.601 ns 27.709 ns 27.882 ns]
change: [+8.1781% +9.1102% +10.030%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
2 (2.00%) low mild
3 (3.00%) high mild
6 (6.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - async-typed
time: [28.955 ns 29.174 ns 29.413 ns]
change: [+1.1226% +3.0366% +5.1126%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
7 (7.00%) high mild
6 (6.00%) high severe
async-pool/no-hook/wasm-to-host - nop - typed
time: [6.5626 ns 6.5733 ns 6.5851 ns]
change: [+40.561% +42.307% +44.514%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
5 (5.00%) high mild
4 (4.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - typed
time: [15.820 ns 15.886 ns 15.969 ns]
change: [+4.1044% +5.7928% +7.7122%] (p = 0.00 < 0.05)
Performance has regressed.
Found 17 outliers among 100 measurements (17.00%)
4 (4.00%) high mild
13 (13.00%) high severe
async-pool/no-hook/wasm-to-host - nop - untyped
time: [20.481 ns 20.521 ns 20.566 ns]
change: [+6.7962% +7.6950% +8.7612%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
6 (6.00%) high mild
5 (5.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - untyped
time: [41.834 ns 41.998 ns 42.189 ns]
change: [-3.8185% -2.2687% -0.7541%] (p = 0.01 < 0.05)
Change within noise threshold.
Found 13 outliers among 100 measurements (13.00%)
3 (3.00%) high mild
10 (10.00%) high severe
async-pool/no-hook/wasm-to-host - nop - unchecked
time: [10.353 ns 10.380 ns 10.414 ns]
change: [+82.042% +84.591% +87.205%] (p = 0.00 < 0.05)
Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
4 (4.00%) high mild
3 (3.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - unchecked
time: [11.123 ns 11.168 ns 11.228 ns]
change: [-30.813% -29.285% -27.874%] (p = 0.00 < 0.05)
Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
11 (11.00%) high mild
1 (1.00%) high severe
async-pool/no-hook/wasm-to-host - nop - async-typed
time: [27.442 ns 27.528 ns 27.638 ns]
change: [+7.5215% +9.9795% +12.266%] (p = 0.00 < 0.05)
Performance has regressed.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - async-typed
time: [29.014 ns 29.148 ns 29.312 ns]
change: [+2.0227% +3.4722% +4.9047%] (p = 0.00 < 0.05)
Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
6 (6.00%) high mild
1 (1.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - typed
time: [6.7916 ns 6.8116 ns 6.8325 ns]
change: [+20.937% +22.050% +23.281%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
5 (5.00%) high mild
6 (6.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - typed
time: [15.917 ns 15.975 ns 16.051 ns]
change: [+4.6404% +6.4217% +8.3075%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
5 (5.00%) high mild
11 (11.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - untyped
time: [21.558 ns 21.612 ns 21.679 ns]
change: [+8.1158% +9.1409% +10.217%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
2 (2.00%) high mild
7 (7.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - untyped
time: [42.475 ns 42.614 ns 42.775 ns]
change: [-6.3613% -4.4709% -2.7647%] (p = 0.00 < 0.05)
Performance has improved.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - unchecked
time: [11.150 ns 11.195 ns 11.247 ns]
change: [+74.424% +77.056% +79.811%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
3 (3.00%) high mild
11 (11.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - unchecked
time: [11.639 ns 11.695 ns 11.760 ns]
change: [-30.212% -29.023% -27.954%] (p = 0.00 < 0.05)
Performance has improved.
Found 15 outliers among 100 measurements (15.00%)
7 (7.00%) high mild
8 (8.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - async-typed
time: [27.480 ns 27.712 ns 27.984 ns]
change: [+2.9764% +6.5061% +9.8914%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
6 (6.00%) high mild
2 (2.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - async-typed
time: [29.218 ns 29.380 ns 29.600 ns]
change: [+5.2283% +7.7247% +10.822%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
2 (2.00%) high mild
14 (14.00%) high severe
```
</details>
* Add s390x support for frame pointer-based stack walking
* wasmtime: Allow `Caller::get_export` to get all exports
* fuzzing: Add a fuzz target to check that our stack traces are correct
We generate Wasm modules that keep track of their own stack as they call and
return between functions, and then we periodically check that if the host
captures a backtrace, it matches what the Wasm module has recorded.
* Remove VM offsets for `VMHostFuncContext` since it isn't used by JIT code
* Add doc comment with stack walking implementation notes
* Document the extra state that can be passed to `wasmtime_runtime::Backtrace` methods
* Add extensive comments for stack walking function
* Factor architecture-specific bits of stack walking out into modules
* Initialize store-related fields in a vmctx to null when there is no store yet
Rather than leaving them as uninitialized data.
* Use `set_callee` instead of manually setting the vmctx field
* Use a more informative compile error message for unsupported architectures
* Document unsafety of `prepare_host_to_wasm_trampoline`
* Use `bti c` instead of `hint #34` in inline aarch64 assembly
* Remove outdated TODO comment
* Remove setting of `last_wasm_exit_fp` in `set_jit_trap`
This is no longer needed as the value is plumbed through to the backtrace code
directly now.
* Only set the stack limit once, in the face of re-entrancy into Wasm
* Add comments for s390x-specific stack walking bits
* Use the helper macro for all libcalls
If we forget to use it, and then trigger a GC from the libcall, that means we
could miss stack frames when walking the stack, fail to find live GC refs, and
then get use after free bugs. Much less risky to always use the helper macro
that takes care of all of that for us.
* Use the `asm_sym!` macro in Wasm-to-libcall trampolines
This macro handles the macOS-specific underscore prefix stuff for us.
* wasmtime: add size and align to `externref` assertion error message
* Extend the `stacks` fuzzer to have host frames in between Wasm frames
This way we get one or more contiguous sequences of Wasm frames on the stack,
instead of exactly one.
* Add documentation for aarch64-specific backtrace helpers
* Clarify that we only support little-endian aarch64 in trampoline comment
* Use `.machine z13` in s390x assembly file
Since apparently our CI machines have pretty old assemblers that don't have
`.machine z14`. This should be fine though since these trampolines don't make
use of anything that is introduced in z14.
* Fix aarch64 build
* Fix macOS build
* Document the `asm_sym!` macro
* Add windows support to the `wasmtime-asm-macros` crate
* Add windows support to host<--->Wasm trampolines
* Fix trap handler build on windows
* Run `rustfmt` on s390x trampoline source file
* Temporarily disable some assertions about a trap's backtrace in the component model tests
Follow up to re-enable this and fix the associated issue:
https://github.com/bytecodealliance/wasmtime/issues/4535
* Refactor libcall definitions with less macros
This refactors the `libcall!` macro to use the
`foreach_builtin_function!` macro to define all of the trampolines.
Additionally the macro surrounding each libcall itself is no longer
necessary and helps avoid too many macros.
* Use `VMOpaqueContext::from_vm_host_func_context` in `VMHostFuncContext::new`
* Move `backtrace` module to be submodule of `traphandlers`
This avoids making some things `pub(crate)` in `traphandlers` that really
shouldn't be.
* Fix macOS aarch64 build
* Use "i64" instead of "word" in aarch64-specific file
* Save/restore entry SP and exit FP/return pointer in the face of panicking imported host functions
Also clean up assertions surrounding our saved entry/exit registers.
* Put "typed" vs "untyped" in the same position of call benchmark names
Regardless if we are doing wasm-to-host or host-to-wasm
* Fix stacks test case generator build for new `wasm-encoder`
* Fix build for s390x
* Expand libcalls in s390x asm
* Disable more parts of component tests now that backtrace assertions are a bit tighter
* Remove assertion that can maybe fail on s390x
Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
|
||
|
|
97894bc65e |
Add initial support for fused adapter trampolines (#4501)
* Add initial support for fused adapter trampolines This commit lands a significant new piece of functionality to Wasmtime's implementation of the component model in the form of the implementation of fused adapter trampolines. Internally within a component core wasm modules can communicate with each other by having their exports `canon lift`'d to get `canon lower`'d into a different component. This signifies that two components are communicating through a statically known interface via the canonical ABI at this time. Previously Wasmtime was able to identify that this communication was happening but it simply panicked with `unimplemented!` upon seeing it. This commit is the beginning of filling out this panic location with an actual implementation. The implementation route chosen here for fused adapters is to use a WebAssembly module itself for the implementation. This means that, at compile time of a component, Wasmtime is generating core WebAssembly modules which then get recursively compiled within Wasmtime as well. The choice to use WebAssembly itself as the implementation of fused adapters stems from a few motivations: * This does not represent a significant increase in the "trusted compiler base" of Wasmtime. Getting the Wasm -> CLIF translation correct once is hard enough much less for an entirely different IR to CLIF. By generating WebAssembly no new interactions with Cranelift are added which drastically reduces the possibilities for mistakes. * Using WebAssembly means that component adapters are insulated from miscompilations and mistakes. If something goes wrong it's defined well within the WebAssembly specification how it goes wrong and what happens as a result. This means that the "blast zone" for a wrong adapter is the component instance but not the entire host itself. Accesses to linear memory are guaranteed to be in-bounds and otherwise handled via well-defined traps. * A fully-finished fused adapter compiler is expected to be a significant and quite complex component of Wasmtime. Functionality along these lines is expected to be needed for Web-based polyfills of the component model and by using core WebAssembly it provides the opportunity to share code between Wasmtime and these polyfills for the component model. * Finally the runtime implementation of managing WebAssembly modules is already implemented and quite easy to integrate with, so representing fused adapters with WebAssembly results in very little extra support necessary for the runtime implementation of instantiating and managing a component. The compiler added in this commit is dubbed Wasmtime's Fused Adapter Compiler of Trampolines (FACT) because who doesn't like deriving a name from an acronym. Currently the trampoline compiler is limited in its support for interface types and only supports a few primitives. I plan on filing future PRs to flesh out the support here for all the variants of `InterfaceType`. For now this PR is primarily focused on all of the other infrastructure for the addition of a trampoline compiler. With the choice to use core WebAssembly to implement fused adapters it means that adapters need to be inserted into a module. Unfortunately adapters cannot all go into a single WebAssembly module because adapters themselves have dependencies which may be provided transitively through instances that were instantiated with other adapters. This means that a significant chunk of this PR (`adapt.rs`) is dedicated to determining precisely which adapters go into precisely which adapter modules. This partitioning process attempts to make large modules wherever it can to cut down on core wasm instantiations but is likely not optimal as it's just a simple heuristic today. With all of this added together it's now possible to start writing `*.wast` tests that internally have adapted modules communicating with one another. A `fused.wast` test suite was added as part of this PR which is the beginning of tests for the support of the fused adapter compiler added in this PR. Currently this is primarily testing some various topologies of adapters along with direct/indirect modes. This will grow many more tests over time as more types are supported. Overall I'm not 100% satisfied with the testing story of this PR. When a test fails it's very difficult to debug since everything is written in the text format of WebAssembly meaning there's no "conveniences" to print out the state of the world when things go wrong and easily debug. I think this will become even more apparent as more tests are written for more types in subsequent PRs. At this time though I know of no better alternative other than leaning pretty heavily on fuzz-testing to ensure this is all exercised. * Fix an unused field warning * Fix tests in `wasmtime-runtime` * Add some more tests for compiled trampolines * Remap exports when injecting adapters The exports of a component were accidentally left unmapped which meant that they indexed the instance indexes pre-adapter module insertion. * Fix typo * Rebase conflicts |
||
|
|
7c67e620c4 |
support dynamic function calls in component model (#4442)
* support dynamic function calls in component model This addresses #4310, introducing a new `component::values::Val` type for representing component values dynamically, as well as `component::types::Type` for representing the corresponding interface types. It also adds a `call` method to `component::func::Func`, which takes a slice of `Val`s as parameters and returns a `Result<Val>` representing the result. Note that I've moved `post_return` and `call_raw` from `TypedFunc` to `Func` since there was nothing specific to `TypedFunc` about them, and I wanted to reuse them. The code in both is unchanged beyond the trivial tweaks to make them fit in their new home. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * order variants and match cases more consistently Signed-off-by: Joel Dice <joel.dice@fermyon.com> * implement lift for String, Box<str>, etc. This also removes the redundant `store` parameter from `Type::load`. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * implement code review feedback This fixes a few issues: - Bad offset calculation when lowering - Missing variant padding - Style issues regarding `types::Handle` - Missed opportunities to reuse `Lift` and `Lower` impls It also adds forwarding `Lift` impls for `Box<[T]>`, `Vec<T>`, etc. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * move `new_*` methods to specific `types` structs Per review feedback, I've moved `Type::new_record` to `Record::new_val` and added a `Type::unwrap_record` method; likewise for the other kinds of types. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * make tuple, option, and expected type comparisons recursive These types should compare as equal across component boundaries as long as their type parameters are equal. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * improve error diagnostic in `Type::check` We now distinguish between more failure cases to provide an informative error message. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * address review feedback - Remove `WasmStr::to_str_from_memory` and `WasmList::get_from_memory` - add `try_new` methods to various `values` types - avoid using `ExactSizeIterator::len` where we can't trust it - fix over-constrained bounds on forwarded `ComponentType` impls Signed-off-by: Joel Dice <joel.dice@fermyon.com> * rearrange code per review feedback - Move functions from `types` to `values` module so we can make certain struct fields private - Rename `try_new` to just `new` Signed-off-by: Joel Dice <joel.dice@fermyon.com> * remove special-case equality test for tuples, options, and expecteds Instead, I've added a FIXME comment and will open an issue to do recursive structural equality testing. Signed-off-by: Joel Dice <joel.dice@fermyon.com> |
||
|
|
e31ff9dc67 |
implement wasmtime::component::flags! per #4308 (#4414)
* implement wasmtime::component::flags! per #4308 This is the last macro needed to complete #4308. It supports generating a Rust type that represents a `flags` component type, analogous to how the [bitflags crate](https://crates.io/crates/bitflags) operates. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * wrap `format_flags` output in parens This ensures we generate non-empty output even when no flags are set. Empty output for a `Debug` implementation would be confusing. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * unconditionally derive `Lift` and `Lower` in wasmtime::component::flags! Per feedback on #4414, we now derive impls for those traits unconditionally, which simplifies the syntax of the macro. Also, I happened to notice an alignment bug in `LowerExpander::expand_variant`, so I fixed that and cleaned up some related code. Finally, I used @jameysharp's trick to calculate bit masks without looping. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * fix shift overflow regression in previous commit Jamey pointed out my mistake: I didn't consider the case when the flag count was evenly divisible by the representation size. This fixes the problem and adds test cases to cover it. Signed-off-by: Joel Dice <joel.dice@fermyon.com> |
||
|
|
76a2545a7f |
Implement nested instance exports for components (#4364)
This commit adds support to Wasmtime for components which themselves export instances. The support here adds new APIs for how instance exports are accessed in the embedding API. For now this is mostly just a first-pass where the API is somewhat confusing and has a lot of lifetimes. I'm hoping that over time we can figure out how to simplify this but for now it should at least be expressive enough for exploring the exports of an instance. |
||
|
|
5542c4ef26 |
support enums with more than 256 variants in derive macro (#4370)
* support enums with more than 256 variants in derive macro This addresses #4361. Technically, we now support up to 2^32 variants, which is the maximum for the canonical ABI. In practice, though, the derived code for enums with even just 2^16 variants takes a prohibitively long time to compile. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * simplify `LowerExpander::expand_variant` code Signed-off-by: Joel Dice <joel.dice@fermyon.com> |
||
|
|
f252ae34ec |
support variant, enum, and union derives (#4359)
* support variant, enum, and union derives This is the second stage of implementing #4308. It adds support for deriving variant, enum, and union impls for `ComponentType`, `Lift`, and `Lower`. It also fixes derived record impls for generic `struct`s, which I had intended to support in my previous commit, but forgot to test. Signed-off-by: Joel Dice <joel.dice@fermyon.com> * deduplicate component-macro code Thanks to @jameysharp for the suggestion! Signed-off-by: Joel Dice <joel.dice@fermyon.com> |
||
|
|
e179e736b9 |
Update may_enter flag handling in components (#4354)
This commit updates the management of the `may_enter` flag in line with WebAssembly/component-model#57. Namely the `may_enter` flag is now exclusively managed in the `canon lift` function (which is `TypedFunc::call`) and is only unset after post-return completes successfully. This implements semantics where if any trap happens for any reason (lifting, lowering, execution, imports, etc) then the instance is considered permanently poisoned and can no longer be entered. Tests needed many updates to create new instances where previously the same instance was reused after it had an erroneous state. |
||
|
|
22fb3ecbbf |
add ComponentType/Lift/Lower derive macro for record types (#4337)
This is the first stage of implementing https://github.com/bytecodealliance/wasmtime/issues/4308, i.e. derive macros for `ComponentType`, `Lift`, and `Lower` for composite types in the component model. This stage only covers records; I expect the other composite types will follow a similar pattern. It borrows heavily from the work Jamey Sharp did in https://github.com/bytecodealliance/wasmtime/pull/4217. Thanks for that, and thanks to both Jamey and Alex Crichton for their excellent review feedback. Thanks also to Brian for pairing up on the initial draft. Signed-off-by: Joel Dice <joel.dice@fermyon.com> |
||
|
|
c1b3962f7b |
Implement lowered-then-lifted functions (#4327)
* Implement lowered-then-lifted functions This commit is a few features bundled into one, culminating in the implementation of lowered-then-lifted functions for the component model. It's probably not going to be used all that often but this is possible within a valid component so Wasmtime needs to do something relatively reasonable. The main things implemented in this commit are: * Component instances are now assigned a `RuntimeComponentInstanceIndex` to differentiate each one. This will be used in the future to detect fusion (one instance lowering a function from another instance). For now it's used to allocate separate `VMComponentFlags` for each internal component instance. * The `CoreExport<FuncIndex>` of lowered functions was changed to a `CoreDef` since technically a lowered function can use another lowered function as the callee. This ended up being not too difficult to plumb through as everything else was already in place. * A need arose to compile host-to-wasm trampolines which weren't already present. Currently wasm in a component is always entered through a host-to-wasm trampoline but core wasm modules are the source of all the trampolines. In the case of a lowered-then-lifted function there may not actually be any core wasm modules, so component objects now contain necessary trampolines not otherwise provided by the core wasm objects. This feature required splitting a new function into the `Compiler` trait for creating a host-to-wasm trampoline. After doing this core wasm compilation was also updated to leverage this which further enabled compiling trampolines in parallel as opposed to the previous synchronous compilation. * Review comments |
||
|
|
fc38f39bd2 |
Expose raw list accessors for all integer types (#4330)
This commit extends the `WasmList<T>` type to have an `as_slice`-lookalike method (now renamed to `as_le_slice`) for all integer types rather than just the `u8` type. With the guarantees of the component model it's known that all lists are aligned in linear memory. Additionally linear memories themselves are also generally guaranteed to be aligned. This means that hosts where the primitive integer alignment is at most the size (which I think is basically all host platforms) can get a raw view into memory for the wasm linear memory for slices of these types. Note, though, that the remaining caveat after alignment is endianness. Big-endian hosts need to be aware that the integers aren't stored in a native format. Previously tools like wit-bindgen have added an `Le<T>` wrapper but for now I've opted to instead use a method that has "le" in the name - `as_le_slice`. I'm hoping that this is a clear enough indicator for users to little-endian conversions as appropriate when reading the values within the slice. |
||
|
|
3339dd1f01 |
Implement the post-return attribute (#4297)
This commit implements the `post-return` feature of the canonical ABI in the component model. This attribute is an optionally-specified function which is to be executed after the return value has been processed by the caller to optionally clean-up the return value. This enables, for example, returning an allocated string and the host then knows how to clean it up to prevent memory leaks in the original module. The API exposed in this PR changes the prior `TypedFunc::call` API in behavior but not in its signature. Previously the `TypedFunc::call` method would set the `may_enter` flag on the way out, but now that operation is deferred until a new `TypedFunc::post_return` method is called. This means that once a method on an instance is invoked then nothing else can be done on the instance until the `post_return` method is called. Note that the method must be called irrespective of whether the `post-return` canonical ABI option was specified or not. Internally wasm will be invoked if necessary. This is a pretty wonky and unergonomic API to work with. For now I couldn't think of a better alternative that improved on the ergonomics. In the theory that the raw Wasmtime bindings for a component may not be used all that heavily (instead `wit-bindgen` would largely be used) I'm hoping that this isn't too much of an issue in the future. cc #4185 |
||
|
|
445cc87a06 |
Fix a "trampoline missing" panic with components (#4296)
One test case I wrote recently was to import a lowered function into a wasm module and then immediately export it. This previously didn't work because trampoline lookup would fail as the original `VMCallerCheckedAnyfunc` function pointer points into the `trampoline_obj` of a component which wasn't registered with the `ModuleRegistry`. This plumbs through the necessary configuration to get that all hooked up. |
||
|
|
651f40855f |
Add support for nested components (#4285)
* Add support for nested components
This commit is an implementation of a number of features of the
component model including:
* Defining nested components
* Outer aliases to components and modules
* Instantiating nested components
The implementation here is intended to be a foundational pillar of
Wasmtime's component model support since recursion and nested components
are the bread-and-butter of the component model. At a high level the
intention for the component model implementation in Wasmtime has long
been that the recursive nature of components is "erased" at compile time
to something that's more optimized and efficient to process. This commit
ended up exemplifying this quite well where the vast majority of the
internal changes here are in the "compilation" phase of a component
rather than the runtime instantiation phase. The support in the
`wasmtime` crate, the runtime instantiation support, only had minor
updates here while the internals of translation have seen heavy updates.
The `translate` module was greatly refactored here in this commit.
Previously it would, as a component is parsed, create a final
`Component` to hand off to trampoline compilation and get persisted at
runtime. Instead now it's a thin layer over `wasmparser` which simply
records a list of `LocalInitializer` entries for how to instantiate the
component and its index spaces are built. This internal representation
of the instantiation of a component is pretty close to the binary format
intentionally.
Instead of performing dataflow legwork the `translate` phase of a
component is now responsible for two primary tasks:
1. All components and modules are discovered within a component. They're
assigned `Static{Component,Module}Index` depending on where they're
found and a `{Module,}Translation` is prepared for each one. This
"flattens" the recursive structure of the binary into an indexed list
processable later.
2. The lexical scope of components is managed here to implement outer
module and component aliases. This is a significant design
implementation because when closing over an outer component or module
that item may actually be imported or something like the result of a
previous instantiation. This means that the capture of
modules and components is both a lexical concern as well as a runtime
concern. The handling of the "runtime" bits are handled in the next
phase of compilation.
The next and currently final phase of compilation is a new pass where
much of the historical code in `translate.rs` has been moved to (but
heavily refactored). The goal of compilation is to produce one "flat"
list of initializers for a component (as happens prior to this PR) and
to achieve this an "inliner" phase runs which runs through the
instantiation process at compile time to produce a list of initializers.
This `inline` module is the main addition as part of this PR and is now
the workhorse for dataflow analysis and tracking what's actually
referring to what.
During the `inline` phase the local initializers recorded in the
`translate` phase are processed, in sequence, to instantiate a
component. Definitions of items are tracked to correspond to their root
definition which allows seeing across instantiation argument boundaries
and such. Handling "upvars" for component outer aliases is handled in
the `inline` phase as well by creating state for a component whenever a
component is defined as was recorded during the `translate` phase.
Finally this phase is chiefly responsible for doing all string-based
name resolution at compile time that it can. This means that at runtime
no string maps will need to be consulted for item exports and such.
The final result of inlining is a list of "global initializers" which is
a flat list processed during instantiation time. These are almost
identical to the initializers that were processed prior to this PR.
There are certainly still more gaps of the component model to implement
but this should be a major leg up in terms of functionality that
Wasmtime implements. This commit, however leaves behind a "hole" which
is not intended to be filled in at this time, namely importing and
exporting components at the "root" level from and to the host. This is
tracked and explained in more detail as part of #4283.
cc #4185 as this completes a number of items there
* Tweak code to work on stable without warning
* Review comments
|
||
|
|
7d7ddceb17 |
Update wasm-tools crates (#4246)
This commit updates the wasm-tools family of crates, notably pulling in the refactorings and updates from bytecodealliance/wasm-tools#621 for the latest iteration of the component model. This commit additionally updates all support for the component model for these changes, notably: * Many bits and pieces of type information was refactored. Many `FooTypeIndex` namings are now `TypeFooIndex`. Additionally there is now `TypeIndex` as well as `ComponentTypeIndex` for the two type index spaces in a component. * A number of new sections are now processed to handle the core and component variants. * Internal maps were split such as the `funcs` map into `component_funcs` and `funcs` (same for `instances`). * Canonical options are now processed individually instead of one bulk `into` definition. Overall this was not a major update to the internals of handling the component model in Wasmtime. Instead this was mostly a surface-level refactoring to make sure that everything lines up with the new binary format for components. * All text syntax used in tests was updated to the new syntax. |
||
|
|
088e568f22 |
Accept (tuple) and unit as () in Rust (#4241)
This commit updates the implementation of `ComponentType for ()` to typecheck both the empty tuple type in addition to the `unit` type in the component model. This allows the usage of `()` when either of those types are used. Currently this can work because we don't need to currently support the answer of "what is the type of this host function". Instead the only question that needs to be answered at runtime is "does this host function match this type". |
||
|
|
0b4448a423 |
Validate alignment in the canonical ABI (#4238)
This commit updates the lifting and lowering done by Wasmtime to validate that alignment is all correct. Previously alignment was ignored because I wasn't sure how this would all work out. To be extra safe I haven't actually modified any loads/stores and they're all still unaligned. If this becomes a performance issue we can investigate aligned loads and stores but otherwise I believe the requisite locations have been guarded with traps and I've also added debug asserts to catch possible future mistakes. |
||
|
|
479def00b9 |
Update lifting for integers and bools (#4237)
This commit updates lifting for integer types and boolean types to account for WebAssembly/component-model#35 where extra bits are now discarded instead of being validated as all zero. |
||
|
|
11ff9650e5 |
Split the ComponentValue trait into... components (#4236)
This commit splits the current `ComponentValue` trait into three separate traits: * `ComponentType` - contains size/align/typecheck information in addition to the "lower" representation. * `Lift` - only contains `lift` and `load` * `Lower` - only contains `lower` and `store` When describing the original implementation of host functions to Nick he immediately pointed out this superior solution to the traits involved with Wasmtime's support for typed parameters/returns in exported and imported functions. Instead of having dynamic errors at runtime for things like "you can't lift a `String`" that's instead a static compile-time error now. While I was doing this split I also refactored the `ComponentParams` trait a bit to have `ComponentType` as a supertrait instead of a subtype which made its implementations a bit more compact. Additionally its impl blocks were folded into the existing tuple impl blocks. |
||
|
|
20f510671d |
Enable passing host functions to components (#4219)
* Enable passing host functions to components
This commit implements the ability to pass a host function into a
component. The `wasmtime::component::Linker` type now has a `func_wrap`
method allowing it to take a host function which is exposed internally
to the component and available for lowering.
This is currently mostly a "let's get at least the bare minimum working"
implementation. That involves plumbing around lots of various bits of
the canonical ABI and getting all the previous PRs to line up in this
one to get a test where we call a function where the host takes a
string. This PR also additionally starts reading and using the
`may_{enter,leave}` flags since this is the first time they're actually
relevant.
Overall while this is the bare bones of working this is not a final spot
we should end up at. One of the major downsides is that host functions
are represented as:
F: Fn(StoreContextMut<'_, T>, Arg1, Arg2, ...) -> Result<Return>
while this naively seems reasonable this critically doesn't allow
`Return` to actually close over any of its arguments. This means that if
you want to return a string to wasm then it has to be `String` or
`Rc<str>` or some other owned type. In the case of `String` this means
that to return a string to wasm you first have to copy it from the host
to a temporary `String` allocation, then to wasm. This extra copy for
all strings/lists is expected to be prohibitive. Unfortuantely I don't
think Rust is able to solve this, at least on stable, today.
Nevertheless I wanted to at least post this to get some feedback on it
since it's the final step in implementing host imports to see how others
feel about it.
* Fix a typo in an assertion
* Fix some typos
* Review comments
|
||
|
|
3ed6fae7b3 |
Add trampoline compilation support for lowered imports (#4206)
* Add trampoline compilation support for lowered imports This commit adds support to the component model implementation for compiling trampolines suitable for calling host imports. Currently this is purely just the compilation side of things, modifying the wasmtime-cranelift crate and additionally filling out a new `VMComponentOffsets` type (similar to `VMOffsets`). The actual creation of a `VMComponentContext` is still not performed and will be a subsequent PR. Internally though some tests are actually possible with this where we at least assert that compilation of a component and creation of everything in-memory doesn't panic or trip any assertions, so some tests are added here for that as well. * Fix some test errors |
||
|
|
b49c5c878e |
Implement module imports into components (#4208)
* Implement module imports into components As a step towards implementing function imports into a component this commit implements importing modules into a component. This fills out missing pieces of functionality such as exporting modules as well. The previous translation code had initial support for translating imported modules but some of the AST type information was restructured with feedback from this implementation, namely splitting the `InstantiateModule` initializer into separate upvar/import variants to clarify that the item orderings for imports are resolved differently at runtime. Much of this commit is also adding infrastructure for any imports at all into a component. For example a `Linker` type (analagous to `wasmtime::Linker`) was added here as well. For now this type is quite limited due to the inability to define host functions (it can only work with instances and instances-of-modules) but it's enough to start writing `*.wast` tests which exercise lots of module-related functionality. * Fix a warning |
||
|
|
d5ce51e8d1 |
Redesign interface type value representation (#4198)
Prior to this PR a major feature of calling component exports (#4039) was the usage of the `Value<T>` type. This type represents a value stored in wasm linear memory (the type `T` stored there). This implementation had a number of drawbacks though: * When returning a value it's ABI-specific whether you use `T` or `Value<T>` as a return value. If `T` is represented with one wasm primitive then you have to return `T`, otherwise the return value must be `Value<T>`. This is somewhat non-obvious and leaks ABI-details into the API which is unfortunate. * The `T` in `Value<T>` was somewhat non-obvious. For example a wasm-owned string was `Value<String>`. Using `Value<&str>` didn't work. * Working with `Value<T>` was unergonomic in the sense that you had to first "pair" it with a `&Store<U>` to get a `Cursor<T>` and then you could start reading the value. * Custom structs and enums, while not implemented yet, were planned to be quite wonky where when you had `Cursor<MyStruct>` then you would have to import a `CursorMyStructExt` trait generated by a proc-macro (think a `#[derive]` on the definition of `MyStruct`) which would enable field accessors, returning cursors of all the fields. * In general there was no "generic way" to load a `T` from memory. Other operations like lift/lower/store all had methods in the `ComponentValue` trait but load had no equivalent. None of these drawbacks were deal-breakers per-se. When I started to implement imported functions, though, the `Value<T>` type no longer worked. The major difference between imports and exports is that when receiving values from wasm an export returns at most one wasm primitive where an import can yield (through arguments) up to 16 wasm primitives. This means that if an export returned a string it would always be `Value<String>` but if an import took a string as an argument there was actually no way to represent this with `Value<String>` since the value wasn't actually stored in memory but rather the pointer/length pair is received as arguments. Overall this meant that `Value<T>` couldn't be used for arguments-to-imports, which means that altogether something new would be required. This PR completely removes the `Value<T>` and `Cursor<T>` type in favor of a different implementation. The inspiration from this comes from the fact that all primitives can be both lifted and lowered into wasm while it's just some times which can only go one direction. For example `String` can be lowered into wasm but can't be lifted from wasm. Instead some sort of "view" into wasm needs to be created during lifting. One of the realizations from #4039 was that we could leverage run-time-type-checking to reject static constructions that don't make sense. For example if an embedder asserts that a wasm function returns a Rust `String` we can reject that at typechecking time because it's impossible for a wasm module to ever do that. The new system of imports/exports in this PR now looks like: * Type-checking takes into accont an `Op` operation which indicates whether we'll be lifting or lowering the type. This means that we can allow the lowering operation for `String` but disallow the lifting operation. While we can't statically rule out an embedder saying that a component returns a `String` we can now reject it at runtime and disallow it from being called. * The `ComponentValue` trait now sports a new `load` function. This function will load and instance of `Self` from the byte-array provided. This is implemented for all types but only ever actually executed when the `lift` operation is allowed during type-checking. * The `Lift` associated type is removed since it's now expected that the lift operation returns `Self`. * The `ComponentReturn` trait is now no longer necessary and is removed. Instead returns are bounded by `ComponentValue`. During type-checking it's required that the return value can be lifted, disallowing, for example, returning a `String` or `&str`. * With `Value` gone there's no need to specify the ABI details of the return value, or whether it's communicated through memory or not. This means that handling return values through memory is transparently handled by Wasmtime. * Validation is in a sense more eagerly performed now. Whenever a value `T` is loaded the entire immediate structure of `T` is loaded and validated. Note that recursive through memory validation still does not happen, so the contents of lists or strings aren't validated, it's just validated that the pointers are in-bounds. Overall this felt like a much clearer system to work with and should be much easier to integrate with imported functions as well. The new `WasmStr` and `WasmList<T>` types can be used in import arguments and lifted from the immediate arguments provided rather than forcing them to always be stored in memory. |
||
|
|
140b83597b |
components: Implement the ability to call component exports (#4039)
* components: Implement the ability to call component exports This commit is an implementation of the typed method of calling component exports. This is intended to represent the most efficient way of calling a component in Wasmtime, similar to what `TypedFunc` represents today for core wasm. Internally this contains all the traits and implementations necessary to invoke component exports with any type signature (e.g. arbitrary parameters and/or results). The expectation is that for results we'll reuse all of this infrastructure except in reverse (arguments and results will be swapped when defining imports). Some features of this implementation are: * Arbitrary type hierarchies are supported * The Rust-standard `Option`, `Result`, `String`, `Vec<T>`, and tuple types all map down to the corresponding type in the component model. * Basic utf-16 string support is implemented as proof-of-concept to show what handling might look like. This will need further testing and benchmarking. * Arguments can be behind "smart pointers", so for example `&Rc<Arc<[u8]>>` corresponds to `list<u8>` in interface types. * Bulk copies from linear memory never happen unless explicitly instructed to do so. The goal of this commit is to create the ability to actually invoke wasm components. This represents what is expected to be the performance threshold for these calls where it ideally should be optimal how WebAssembly is invoked. One major missing piece of this is a `#[derive]` of some sort to generate Rust types for arbitrary `*.wit` types such as custom records, variants, flags, unions, etc. The current trait impls for tuples and `Result<T, E>` are expected to have fleshed out most of what such a derive would look like. There are some downsides and missing pieces to this commit and method of calling components, however, such as: * Passing `&[u8]` to WebAssembly is currently not optimal. Ideally this compiles down to a `memcpy`-equivalent somewhere but that currently doesn't happen due to all the bounds checks of copying data into memory. I have been unsuccessful so far at getting these bounds checks to be removed. * There is no finalization at this time (the "post return" functionality in the canonical ABI). Implementing this should be relatively straightforward but at this time requires `wasmparser` changes to catch up with the current canonical ABI. * There is no guarantee that results of a wasm function will be validated. As results are consumed they are validated but this means that if function returns an invalid string which the host doesn't look at then no trap will be generated. This is probably not the intended semantics of hosts in the component model. * At this time there's no support for memory64 memories, just a bunch of `FIXME`s to get around to. It's expected that this won't be too onerous, however. Some extra care will need to ensure that the various methods related to size/alignment all optimize to the same thing they do today (e.g. constants). * The return value of a typed component function is either `T` or `Value<T>`, and it depends on the ABI details of `T` and whether it takes up more than one return value slot or not. This is an ABI-implementation detail which is being forced through to the API layer which is pretty unfortunate. For example if you say the return value of a function is `(u8, u32)` then it's a runtime type-checking error. I don't know of a great way to solve this at this time. Overall I'm feeling optimistic about this trajectory of implementing value lifting/lowering in Wasmtime. While there are a number of downsides none seem completely insurmountable. There's naturally still a good deal of work with the component model but this should be a significant step up towards implementing and testing the component model. * Review comments * Write tests for calling functions This commit adds a new test file for actually executing functions and testing their results. This is not written as a `*.wast` test yet since it's not 100% clear if that's the best way to do that for now (given that dynamic signatures aren't supported yet). The tests themselves could all largely be translated to `*.wast` testing in the future, though, if supported. Along the way a number of minor issues were fixed with lowerings with the bugs exposed here. * Fix an endian mistake * Fix a typo and the `memory.fill` instruction |