5a006674c39b5003128b78bc9a92f8edc99ae45c
77 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
3535acbf3b |
Merge pull request from GHSA-wh6w-3828-g9qf
* Unconditionally use `MemoryImageSlot` This commit removes the internal branching within the pooling instance allocator to sometimes use a `MemoryImageSlot` and sometimes now. Instead this is now unconditionally used in all situations on all platforms. This fixes an issue where the state of a slot could get corrupted if modules being instantiated switched from having images to not having an image or vice versa. The bulk of this commit is the removal of the `memory-init-cow` compile-time feature in addition to adding Windows support to the `cow.rs` file. * Fix compile on Unix * Add a stricter assertion for static memory bounds Double-check that when a memory is allocated the configuration required is satisfied by the pooling allocator. |
||
|
|
b14551d7ca |
Refactor configuration for the pooling allocator (#5205)
This commit changes the APIs in the `wasmtime` crate for configuring the pooling allocator. I plan on adding a few more configuration options in the near future and the current structure was feeling unwieldy for adding these new abstractions. The previous `struct`-based API has been replaced with a builder-style API in a similar shape as to `Config`. This is done to help make it easier to add more configuration options in the future through adding more methods as opposed to adding more field which could break prior initializations. |
||
|
|
cd53bed898 |
Implement AOT compilation for components (#5160)
* Pull `Module` out of `ModuleTextBuilder` This commit is the first in what will likely be a number towards preparing for serializing a compiled component to bytes, a precompiled artifact. To that end my rough plan is to merge all of the compiled artifacts for a component into one large object file instead of having lots of separate object files and lots of separate mmaps to manage. To that end I plan on eventually using `ModuleTextBuilder` to build one large text section for all core wasm modules and trampolines, meaning that `ModuleTextBuilder` is no longer specific to one module. I've extracted out functionality such as function name calculation as well as relocation resolving (now a closure passed in) in preparation for this. For now this just keeps tests passing, and the trajectory for this should become more clear over the following commits. * Remove component-specific object emission This commit removes the `ComponentCompiler::emit_obj` function in favor of `Compiler::emit_obj`, now renamed `append_code`. This involved significantly refactoring code emission to take a flat list of functions into `append_code` and the caller is responsible for weaving together various "families" of functions and un-weaving them afterwards. * Consolidate ELF parsing in `CodeMemory` This commit moves the ELF file parsing and section iteration from `CompiledModule` into `CodeMemory` so one location keeps track of section ranges and such. This is in preparation for sharing much of this code with components which needs all the same sections to get tracked but won't be using `CompiledModule`. A small side benefit from this is that the section parsing done in `CodeMemory` and `CompiledModule` is no longer duplicated. * Remove separately tracked traps in components Previously components would generate an "always trapping" function and the metadata around which pc was allowed to trap was handled manually for components. With recent refactorings the Wasmtime-standard trap section in object files is now being generated for components as well which means that can be reused instead of custom-tracking this metadata. This commit removes the manual tracking for the `always_trap` functions and plumbs the necessary bits around to make components look more like modules. * Remove a now-unnecessary `Arc` in `Module` Not expected to have any measurable impact on performance, but complexity-wise this should make it a bit easier to understand the internals since there's no longer any need to store this somewhere else than its owner's location. * Merge compilation artifacts of components This commit is a large refactoring of the component compilation process to produce a single artifact instead of multiple binary artifacts. The core wasm compilation process is refactored as well to share as much code as necessary with the component compilation process. This method of representing a compiled component necessitated a few medium-sized changes internally within Wasmtime: * A new data structure was created, `CodeObject`, which represents metadata about a single compiled artifact. This is then stored as an `Arc` within a component and a module. For `Module` this is always uniquely owned and represents a shuffling around of data from one owner to another. For a `Component`, however, this is shared amongst all loaded modules and the top-level component. * The "module registry" which is used for symbolicating backtraces and for trap information has been updated to account for a single region of loaded code holding possibly multiple modules. This involved adding a second-level `BTreeMap` for now. This will likely slow down instantiation slightly but if it poses an issue in the future this should be able to be represented with a more clever data structure. This commit additionally solves a number of longstanding issues with components such as compiling only one host-to-wasm trampoline per signature instead of possibly once-per-module. Additionally the `SignatureCollection` registration now happens once-per-component instead of once-per-module-within-a-component. * Fix compile errors from prior commits * Support AOT-compiling components This commit adds support for AOT-compiled components in the same manner as `Module`, specifically adding: * `Engine::precompile_component` * `Component::serialize` * `Component::deserialize` * `Component::deserialize_file` Internally the support for components looks quite similar to `Module`. All the prior commits to this made adding the support here (unsurprisingly) easy. Components are represented as a single object file as are modules, and the functions for each module are all piled into the same object file next to each other (as are areas such as data sections). Support was also added here to quickly differentiate compiled components vs compiled modules via the `e_flags` field in the ELF header. * Prevent serializing exported modules on components The current representation of a module within a component means that the implementation of `Module::serialize` will not work if the module is exported from a component. The reason for this is that `serialize` doesn't actually do anything and simply returns the underlying mmap as a list of bytes. The mmap, however, has `.wasmtime.info` describing component metadata as opposed to this module's metadata. While rewriting this section could be implemented it's not so easy to do so and is otherwise seen as not super important of a feature right now anyway. * Fix windows build * Fix an unused function warning * Update crates/environ/src/compilation.rs Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com> Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com> |
||
|
|
c1c48b4386 |
Don't be clever about representing non-CoW images (#4691)
This commit fixes a build warning on Rust 1.63 when the `memory-init-cow`
feature is disabled in the `wasmtime-runtime` crate. Some "tricks" were
used prior to have the `MemoryImage` type be an empty `enum {}` but that
wreaks havoc with warnings so this commit instead just makes it a unit
struct and makes all methods panic (as they shouldn't be hit anyway).
|
||
|
|
46782b18c2 |
wasmtime: Implement fast Wasm stack walking (#4431)
* Always preserve frame pointers in Wasmtime
This allows us to efficiently and simply capture Wasm stacks without maintaining
and synchronizing any safety-critical side tables between the compiler and the
runtime.
* wasmtime: Implement fast Wasm stack walking
Why do we want Wasm stack walking to be fast? Because we capture stacks whenever
there is a trap and traps actually happen fairly frequently with short-lived
programs and WASI's `exit`.
Previously, we would rely on generating the system unwind info (e.g.
`.eh_frame`) and using the system unwinder (via the `backtrace`crate) to walk
the full stack and filter out any non-Wasm stack frames. This can,
unfortunately, be slow for two primary reasons:
1. The system unwinder is doing `O(all-kinds-of-frames)` work rather than
`O(wasm-frames)` work.
2. System unwind info and the system unwinder need to be much more general than
a purpose-built stack walker for Wasm needs to be. It has to handle any kind of
stack frame that any compiler might emit where as our Wasm frames are emitted by
Cranelift and always have frame pointers. This translates into implementation
complexity and general overhead. There can also be unnecessary-for-our-use-cases
global synchronization and locks involved, further slowing down stack walking in
the presence of multiple threads trying to capture stacks in parallel.
This commit introduces a purpose-built stack walker for traversing just our Wasm
frames. To find all the sequences of Wasm-to-Wasm stack frames, and ignore
non-Wasm stack frames, we keep a linked list of `(entry stack pointer, exit
frame pointer)` pairs. This linked list is maintained via Wasm-to-host and
host-to-Wasm trampolines. Within a sequence of Wasm-to-Wasm calls, we can use
frame pointers (which Cranelift preserves) to find the next older Wasm frame on
the stack, and we keep doing this until we reach the entry stack pointer,
meaning that the next older frame will be a host frame.
The trampolines need to avoid a couple stumbling blocks. First, they need to be
compiled ahead of time, since we may not have access to a compiler at
runtime (e.g. if the `cranelift` feature is disabled) but still want to be able
to call functions that have already been compiled and get stack traces for those
functions. Usually this means we would compile the appropriate trampolines
inside `Module::new` and the compiled module object would hold the
trampolines. However, we *also* need to support calling host functions that are
wrapped into `wasmtime::Func`s and there doesn't exist *any* ahead-of-time
compiled module object to hold the appropriate trampolines:
```rust
// Define a host function.
let func_type = wasmtime::FuncType::new(
vec![wasmtime::ValType::I32],
vec![wasmtime::ValType::I32],
);
let func = Func::new(&mut store, func_type, |_, params, results| {
// ...
Ok(())
});
// Call that host function.
let mut results = vec![wasmtime::Val::I32(0)];
func.call(&[wasmtime::Val::I32(0)], &mut results)?;
```
Therefore, we define one host-to-Wasm trampoline and one Wasm-to-host trampoline
in assembly that work for all Wasm and host function signatures. These
trampolines are careful to only use volatile registers, avoid touching any
register that is an argument in the calling convention ABI, and tail call to the
target callee function. This allows forwarding any set of arguments and any
returns to and from the callee, while also allowing us to maintain our linked
list of Wasm stack and frame pointers before transferring control to the
callee. These trampolines are not used in Wasm-to-Wasm calls, only when crossing
the host-Wasm boundary, so they do not impose overhead on regular calls. (And if
using one trampoline for all host-Wasm boundary crossing ever breaks branch
prediction enough in the CPU to become any kind of bottleneck, we can do fun
things like have multiple copies of the same trampoline and choose a random copy
for each function, sharding the functions across branch predictor entries.)
Finally, this commit also ends the use of a synthetic `Module` and allocating a
stubbed out `VMContext` for host functions. Instead, we define a
`VMHostFuncContext` with its own magic value, similar to `VMComponentContext`,
specifically for host functions.
<h2>Benchmarks</h2>
<h3>Traps and Stack Traces</h3>
Large improvements to taking stack traces on traps, ranging from shaving off 64%
to 99.95% of the time it used to take.
<details>
```
multi-threaded-traps/0 time: [2.5686 us 2.5808 us 2.5934 us]
thrpt: [0.0000 elem/s 0.0000 elem/s 0.0000 elem/s]
change:
time: [-85.419% -85.153% -84.869%] (p = 0.00 < 0.05)
thrpt: [+560.90% +573.56% +585.84%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
multi-threaded-traps/1 time: [2.9021 us 2.9167 us 2.9322 us]
thrpt: [341.04 Kelem/s 342.86 Kelem/s 344.58 Kelem/s]
change:
time: [-91.455% -91.294% -91.096%] (p = 0.00 < 0.05)
thrpt: [+1023.1% +1048.6% +1070.3%]
Performance has improved.
Found 6 outliers among 100 measurements (6.00%)
1 (1.00%) high mild
5 (5.00%) high severe
multi-threaded-traps/2 time: [2.9996 us 3.0145 us 3.0295 us]
thrpt: [660.18 Kelem/s 663.47 Kelem/s 666.76 Kelem/s]
change:
time: [-94.040% -93.910% -93.762%] (p = 0.00 < 0.05)
thrpt: [+1503.1% +1542.0% +1578.0%]
Performance has improved.
Found 5 outliers among 100 measurements (5.00%)
5 (5.00%) high severe
multi-threaded-traps/4 time: [5.5768 us 5.6052 us 5.6364 us]
thrpt: [709.68 Kelem/s 713.63 Kelem/s 717.25 Kelem/s]
change:
time: [-93.193% -93.121% -93.052%] (p = 0.00 < 0.05)
thrpt: [+1339.2% +1353.6% +1369.1%]
Performance has improved.
multi-threaded-traps/8 time: [8.6408 us 9.1212 us 9.5438 us]
thrpt: [838.24 Kelem/s 877.08 Kelem/s 925.84 Kelem/s]
change:
time: [-94.754% -94.473% -94.202%] (p = 0.00 < 0.05)
thrpt: [+1624.7% +1709.2% +1806.1%]
Performance has improved.
multi-threaded-traps/16 time: [10.152 us 10.840 us 11.545 us]
thrpt: [1.3858 Melem/s 1.4760 Melem/s 1.5761 Melem/s]
change:
time: [-97.042% -96.823% -96.577%] (p = 0.00 < 0.05)
thrpt: [+2821.5% +3048.1% +3281.1%]
Performance has improved.
Found 1 outliers among 100 measurements (1.00%)
1 (1.00%) high mild
many-modules-registered-traps/1
time: [2.6278 us 2.6361 us 2.6447 us]
thrpt: [378.11 Kelem/s 379.35 Kelem/s 380.55 Kelem/s]
change:
time: [-85.311% -85.108% -84.909%] (p = 0.00 < 0.05)
thrpt: [+562.65% +571.51% +580.76%]
Performance has improved.
Found 9 outliers among 100 measurements (9.00%)
3 (3.00%) high mild
6 (6.00%) high severe
many-modules-registered-traps/8
time: [2.6294 us 2.6460 us 2.6623 us]
thrpt: [3.0049 Melem/s 3.0235 Melem/s 3.0425 Melem/s]
change:
time: [-85.895% -85.485% -85.022%] (p = 0.00 < 0.05)
thrpt: [+567.63% +588.95% +608.95%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
3 (3.00%) high mild
5 (5.00%) high severe
many-modules-registered-traps/64
time: [2.6218 us 2.6329 us 2.6452 us]
thrpt: [24.195 Melem/s 24.308 Melem/s 24.411 Melem/s]
change:
time: [-93.629% -93.551% -93.470%] (p = 0.00 < 0.05)
thrpt: [+1431.4% +1450.6% +1469.5%]
Performance has improved.
Found 3 outliers among 100 measurements (3.00%)
3 (3.00%) high mild
many-modules-registered-traps/512
time: [2.6569 us 2.6737 us 2.6923 us]
thrpt: [190.17 Melem/s 191.50 Melem/s 192.71 Melem/s]
change:
time: [-99.277% -99.268% -99.260%] (p = 0.00 < 0.05)
thrpt: [+13417% +13566% +13731%]
Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
4 (4.00%) high mild
many-modules-registered-traps/4096
time: [2.7258 us 2.7390 us 2.7535 us]
thrpt: [1.4876 Gelem/s 1.4955 Gelem/s 1.5027 Gelem/s]
change:
time: [-99.956% -99.955% -99.955%] (p = 0.00 < 0.05)
thrpt: [+221417% +223380% +224881%]
Performance has improved.
Found 2 outliers among 100 measurements (2.00%)
1 (1.00%) high mild
1 (1.00%) high severe
many-stack-frames-traps/1
time: [1.4658 us 1.4719 us 1.4784 us]
thrpt: [676.39 Kelem/s 679.38 Kelem/s 682.21 Kelem/s]
change:
time: [-90.368% -89.947% -89.586%] (p = 0.00 < 0.05)
thrpt: [+860.23% +894.72% +938.21%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
5 (5.00%) high mild
3 (3.00%) high severe
many-stack-frames-traps/8
time: [2.4772 us 2.4870 us 2.4973 us]
thrpt: [3.2034 Melem/s 3.2167 Melem/s 3.2294 Melem/s]
change:
time: [-85.550% -85.370% -85.199%] (p = 0.00 < 0.05)
thrpt: [+575.65% +583.51% +592.03%]
Performance has improved.
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
many-stack-frames-traps/64
time: [10.109 us 10.171 us 10.236 us]
thrpt: [6.2525 Melem/s 6.2925 Melem/s 6.3309 Melem/s]
change:
time: [-78.144% -77.797% -77.336%] (p = 0.00 < 0.05)
thrpt: [+341.22% +350.38% +357.55%]
Performance has improved.
Found 7 outliers among 100 measurements (7.00%)
5 (5.00%) high mild
2 (2.00%) high severe
many-stack-frames-traps/512
time: [126.16 us 126.54 us 126.96 us]
thrpt: [4.0329 Melem/s 4.0461 Melem/s 4.0583 Melem/s]
change:
time: [-65.364% -64.933% -64.453%] (p = 0.00 < 0.05)
thrpt: [+181.32% +185.17% +188.71%]
Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
4 (4.00%) high severe
```
</details>
<h3>Calls</h3>
There is, however, a small regression in raw Wasm-to-host and host-to-Wasm call
performance due the new trampolines. It seems to be on the order of about 2-10
nanoseconds per call, depending on the benchmark.
I believe this regression is ultimately acceptable because
1. this overhead will be vastly dominated by whatever work a non-nop callee
actually does,
2. we will need these trampolines, or something like them, when implementing the
Wasm exceptions proposal to do things like translate Wasm's exceptions into
Rust's `Result`s,
3. and because the performance improvements to trapping and capturing stack
traces are of such a larger magnitude than this call regressions.
<details>
```
sync/no-hook/host-to-wasm - typed - nop
time: [28.683 ns 28.757 ns 28.844 ns]
change: [+16.472% +17.183% +17.904%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
1 (1.00%) low mild
4 (4.00%) high mild
5 (5.00%) high severe
sync/no-hook/host-to-wasm - untyped - nop
time: [42.515 ns 42.652 ns 42.841 ns]
change: [+12.371% +14.614% +17.462%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
1 (1.00%) high mild
10 (10.00%) high severe
sync/no-hook/host-to-wasm - unchecked - nop
time: [33.936 ns 34.052 ns 34.179 ns]
change: [+25.478% +26.938% +28.369%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
7 (7.00%) high mild
2 (2.00%) high severe
sync/no-hook/host-to-wasm - typed - nop-params-and-results
time: [34.290 ns 34.388 ns 34.502 ns]
change: [+40.802% +42.706% +44.526%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
5 (5.00%) high mild
8 (8.00%) high severe
sync/no-hook/host-to-wasm - untyped - nop-params-and-results
time: [62.546 ns 62.721 ns 62.919 ns]
change: [+2.5014% +3.6319% +4.8078%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
2 (2.00%) high mild
10 (10.00%) high severe
sync/no-hook/host-to-wasm - unchecked - nop-params-and-results
time: [42.609 ns 42.710 ns 42.831 ns]
change: [+20.966% +22.282% +23.475%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
4 (4.00%) high mild
7 (7.00%) high severe
sync/hook-sync/host-to-wasm - typed - nop
time: [29.546 ns 29.675 ns 29.818 ns]
change: [+20.693% +21.794% +22.836%] (p = 0.00 < 0.05)
Performance has regressed.
Found 5 outliers among 100 measurements (5.00%)
3 (3.00%) high mild
2 (2.00%) high severe
sync/hook-sync/host-to-wasm - untyped - nop
time: [45.448 ns 45.699 ns 45.961 ns]
change: [+17.204% +18.514% +19.590%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
4 (4.00%) high mild
10 (10.00%) high severe
sync/hook-sync/host-to-wasm - unchecked - nop
time: [34.334 ns 34.437 ns 34.558 ns]
change: [+23.225% +24.477% +25.886%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
5 (5.00%) high mild
7 (7.00%) high severe
sync/hook-sync/host-to-wasm - typed - nop-params-and-results
time: [36.594 ns 36.763 ns 36.974 ns]
change: [+41.967% +47.261% +52.086%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
3 (3.00%) high mild
9 (9.00%) high severe
sync/hook-sync/host-to-wasm - untyped - nop-params-and-results
time: [63.541 ns 63.831 ns 64.194 ns]
change: [-4.4337% -0.6855% +2.7134%] (p = 0.73 > 0.05)
No change in performance detected.
Found 8 outliers among 100 measurements (8.00%)
6 (6.00%) high mild
2 (2.00%) high severe
sync/hook-sync/host-to-wasm - unchecked - nop-params-and-results
time: [43.968 ns 44.169 ns 44.437 ns]
change: [+18.772% +21.802% +24.623%] (p = 0.00 < 0.05)
Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
3 (3.00%) high mild
12 (12.00%) high severe
async/no-hook/host-to-wasm - typed - nop
time: [4.9612 us 4.9743 us 4.9889 us]
change: [+9.9493% +11.911% +13.502%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
6 (6.00%) high mild
4 (4.00%) high severe
async/no-hook/host-to-wasm - untyped - nop
time: [5.0030 us 5.0211 us 5.0439 us]
change: [+10.841% +11.873% +12.977%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
3 (3.00%) high mild
7 (7.00%) high severe
async/no-hook/host-to-wasm - typed - nop-params-and-results
time: [4.9273 us 4.9468 us 4.9700 us]
change: [+4.7381% +6.8445% +8.8238%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
5 (5.00%) high mild
9 (9.00%) high severe
async/no-hook/host-to-wasm - untyped - nop-params-and-results
time: [5.1151 us 5.1338 us 5.1555 us]
change: [+9.5335% +11.290% +13.044%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
3 (3.00%) high mild
13 (13.00%) high severe
async/hook-sync/host-to-wasm - typed - nop
time: [4.9330 us 4.9394 us 4.9467 us]
change: [+10.046% +11.038% +12.035%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
5 (5.00%) high mild
7 (7.00%) high severe
async/hook-sync/host-to-wasm - untyped - nop
time: [5.0073 us 5.0183 us 5.0310 us]
change: [+9.3828% +10.565% +11.752%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
3 (3.00%) high mild
5 (5.00%) high severe
async/hook-sync/host-to-wasm - typed - nop-params-and-results
time: [4.9610 us 4.9839 us 5.0097 us]
change: [+9.0857% +11.513% +14.359%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
7 (7.00%) high mild
6 (6.00%) high severe
async/hook-sync/host-to-wasm - untyped - nop-params-and-results
time: [5.0995 us 5.1272 us 5.1617 us]
change: [+9.3600% +11.506% +13.809%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
6 (6.00%) high mild
4 (4.00%) high severe
async-pool/no-hook/host-to-wasm - typed - nop
time: [2.4242 us 2.4316 us 2.4396 us]
change: [+7.8756% +8.8803% +9.8346%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
5 (5.00%) high mild
3 (3.00%) high severe
async-pool/no-hook/host-to-wasm - untyped - nop
time: [2.5102 us 2.5155 us 2.5210 us]
change: [+12.130% +13.194% +14.270%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
4 (4.00%) high mild
8 (8.00%) high severe
async-pool/no-hook/host-to-wasm - typed - nop-params-and-results
time: [2.4203 us 2.4310 us 2.4440 us]
change: [+4.0380% +6.3623% +8.7534%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
5 (5.00%) high mild
9 (9.00%) high severe
async-pool/no-hook/host-to-wasm - untyped - nop-params-and-results
time: [2.5501 us 2.5593 us 2.5700 us]
change: [+8.8802% +10.976% +12.937%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
5 (5.00%) high mild
11 (11.00%) high severe
async-pool/hook-sync/host-to-wasm - typed - nop
time: [2.4135 us 2.4190 us 2.4254 us]
change: [+8.3640% +9.3774% +10.435%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
6 (6.00%) high mild
5 (5.00%) high severe
async-pool/hook-sync/host-to-wasm - untyped - nop
time: [2.5172 us 2.5248 us 2.5357 us]
change: [+11.543% +12.750% +13.982%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
1 (1.00%) high mild
7 (7.00%) high severe
async-pool/hook-sync/host-to-wasm - typed - nop-params-and-results
time: [2.4214 us 2.4353 us 2.4532 us]
change: [+1.5158% +5.0872% +8.6765%] (p = 0.00 < 0.05)
Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
2 (2.00%) high mild
13 (13.00%) high severe
async-pool/hook-sync/host-to-wasm - untyped - nop-params-and-results
time: [2.5499 us 2.5607 us 2.5748 us]
change: [+10.146% +12.459% +14.919%] (p = 0.00 < 0.05)
Performance has regressed.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
sync/no-hook/wasm-to-host - nop - typed
time: [6.6135 ns 6.6288 ns 6.6452 ns]
change: [+37.927% +38.837% +39.869%] (p = 0.00 < 0.05)
Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
2 (2.00%) high mild
5 (5.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - typed
time: [15.930 ns 15.993 ns 16.067 ns]
change: [+3.9583% +5.6286% +7.2430%] (p = 0.00 < 0.05)
Performance has regressed.
Found 12 outliers among 100 measurements (12.00%)
11 (11.00%) high mild
1 (1.00%) high severe
sync/no-hook/wasm-to-host - nop - untyped
time: [20.596 ns 20.640 ns 20.690 ns]
change: [+4.3293% +5.2047% +6.0935%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
5 (5.00%) high mild
5 (5.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - untyped
time: [42.659 ns 42.882 ns 43.159 ns]
change: [-2.1466% -0.5079% +1.2554%] (p = 0.58 > 0.05)
No change in performance detected.
Found 15 outliers among 100 measurements (15.00%)
1 (1.00%) high mild
14 (14.00%) high severe
sync/no-hook/wasm-to-host - nop - unchecked
time: [10.671 ns 10.691 ns 10.713 ns]
change: [+83.911% +87.620% +92.062%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
2 (2.00%) high mild
7 (7.00%) high severe
sync/no-hook/wasm-to-host - nop-params-and-results - unchecked
time: [11.136 ns 11.190 ns 11.263 ns]
change: [-29.719% -28.446% -27.029%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
4 (4.00%) high mild
10 (10.00%) high severe
sync/hook-sync/wasm-to-host - nop - typed
time: [6.7964 ns 6.8087 ns 6.8226 ns]
change: [+21.531% +24.206% +27.331%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
4 (4.00%) high mild
10 (10.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - typed
time: [15.865 ns 15.921 ns 15.985 ns]
change: [+4.8466% +6.3330% +7.8317%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
3 (3.00%) high mild
13 (13.00%) high severe
sync/hook-sync/wasm-to-host - nop - untyped
time: [21.505 ns 21.587 ns 21.677 ns]
change: [+8.0908% +9.1943% +10.254%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
4 (4.00%) high mild
4 (4.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - untyped
time: [44.018 ns 44.128 ns 44.261 ns]
change: [-1.4671% -0.0458% +1.2443%] (p = 0.94 > 0.05)
No change in performance detected.
Found 14 outliers among 100 measurements (14.00%)
5 (5.00%) high mild
9 (9.00%) high severe
sync/hook-sync/wasm-to-host - nop - unchecked
time: [11.264 ns 11.326 ns 11.387 ns]
change: [+80.225% +81.659% +83.068%] (p = 0.00 < 0.05)
Performance has regressed.
Found 6 outliers among 100 measurements (6.00%)
3 (3.00%) high mild
3 (3.00%) high severe
sync/hook-sync/wasm-to-host - nop-params-and-results - unchecked
time: [11.816 ns 11.865 ns 11.920 ns]
change: [-29.152% -28.040% -26.957%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
8 (8.00%) high mild
6 (6.00%) high severe
async/no-hook/wasm-to-host - nop - typed
time: [6.6221 ns 6.6385 ns 6.6569 ns]
change: [+43.618% +44.755% +45.965%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
6 (6.00%) high mild
7 (7.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - typed
time: [15.884 ns 15.929 ns 15.983 ns]
change: [+3.5987% +5.2053% +6.7846%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
3 (3.00%) high mild
13 (13.00%) high severe
async/no-hook/wasm-to-host - nop - untyped
time: [20.615 ns 20.702 ns 20.821 ns]
change: [+6.9799% +8.1212% +9.2819%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
2 (2.00%) high mild
8 (8.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - untyped
time: [41.956 ns 42.207 ns 42.521 ns]
change: [-4.3057% -2.7730% -1.2428%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
3 (3.00%) high mild
11 (11.00%) high severe
async/no-hook/wasm-to-host - nop - unchecked
time: [10.440 ns 10.474 ns 10.513 ns]
change: [+83.959% +85.826% +87.541%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
5 (5.00%) high mild
6 (6.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - unchecked
time: [11.476 ns 11.512 ns 11.554 ns]
change: [-29.857% -28.383% -26.978%] (p = 0.00 < 0.05)
Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
1 (1.00%) low mild
6 (6.00%) high mild
5 (5.00%) high severe
async/no-hook/wasm-to-host - nop - async-typed
time: [26.427 ns 26.478 ns 26.532 ns]
change: [+6.5730% +7.4676% +8.3983%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
2 (2.00%) high mild
7 (7.00%) high severe
async/no-hook/wasm-to-host - nop-params-and-results - async-typed
time: [28.557 ns 28.693 ns 28.880 ns]
change: [+1.9099% +3.7332% +5.9731%] (p = 0.00 < 0.05)
Performance has regressed.
Found 15 outliers among 100 measurements (15.00%)
1 (1.00%) high mild
14 (14.00%) high severe
async/hook-sync/wasm-to-host - nop - typed
time: [6.7488 ns 6.7630 ns 6.7784 ns]
change: [+19.935% +22.080% +23.683%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
4 (4.00%) high mild
5 (5.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - typed
time: [15.928 ns 16.031 ns 16.149 ns]
change: [+5.5188% +6.9567% +8.3839%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
9 (9.00%) high mild
2 (2.00%) high severe
async/hook-sync/wasm-to-host - nop - untyped
time: [21.930 ns 22.114 ns 22.296 ns]
change: [+4.6674% +7.7588% +10.375%] (p = 0.00 < 0.05)
Performance has regressed.
Found 4 outliers among 100 measurements (4.00%)
3 (3.00%) high mild
1 (1.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - untyped
time: [42.684 ns 42.858 ns 43.081 ns]
change: [-5.2957% -3.4693% -1.6217%] (p = 0.00 < 0.05)
Performance has improved.
Found 14 outliers among 100 measurements (14.00%)
2 (2.00%) high mild
12 (12.00%) high severe
async/hook-sync/wasm-to-host - nop - unchecked
time: [11.026 ns 11.053 ns 11.086 ns]
change: [+70.751% +72.378% +73.961%] (p = 0.00 < 0.05)
Performance has regressed.
Found 10 outliers among 100 measurements (10.00%)
5 (5.00%) high mild
5 (5.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - unchecked
time: [11.840 ns 11.900 ns 11.982 ns]
change: [-27.977% -26.584% -24.887%] (p = 0.00 < 0.05)
Performance has improved.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
async/hook-sync/wasm-to-host - nop - async-typed
time: [27.601 ns 27.709 ns 27.882 ns]
change: [+8.1781% +9.1102% +10.030%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
2 (2.00%) low mild
3 (3.00%) high mild
6 (6.00%) high severe
async/hook-sync/wasm-to-host - nop-params-and-results - async-typed
time: [28.955 ns 29.174 ns 29.413 ns]
change: [+1.1226% +3.0366% +5.1126%] (p = 0.00 < 0.05)
Performance has regressed.
Found 13 outliers among 100 measurements (13.00%)
7 (7.00%) high mild
6 (6.00%) high severe
async-pool/no-hook/wasm-to-host - nop - typed
time: [6.5626 ns 6.5733 ns 6.5851 ns]
change: [+40.561% +42.307% +44.514%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
5 (5.00%) high mild
4 (4.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - typed
time: [15.820 ns 15.886 ns 15.969 ns]
change: [+4.1044% +5.7928% +7.7122%] (p = 0.00 < 0.05)
Performance has regressed.
Found 17 outliers among 100 measurements (17.00%)
4 (4.00%) high mild
13 (13.00%) high severe
async-pool/no-hook/wasm-to-host - nop - untyped
time: [20.481 ns 20.521 ns 20.566 ns]
change: [+6.7962% +7.6950% +8.7612%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
6 (6.00%) high mild
5 (5.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - untyped
time: [41.834 ns 41.998 ns 42.189 ns]
change: [-3.8185% -2.2687% -0.7541%] (p = 0.01 < 0.05)
Change within noise threshold.
Found 13 outliers among 100 measurements (13.00%)
3 (3.00%) high mild
10 (10.00%) high severe
async-pool/no-hook/wasm-to-host - nop - unchecked
time: [10.353 ns 10.380 ns 10.414 ns]
change: [+82.042% +84.591% +87.205%] (p = 0.00 < 0.05)
Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
4 (4.00%) high mild
3 (3.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - unchecked
time: [11.123 ns 11.168 ns 11.228 ns]
change: [-30.813% -29.285% -27.874%] (p = 0.00 < 0.05)
Performance has improved.
Found 12 outliers among 100 measurements (12.00%)
11 (11.00%) high mild
1 (1.00%) high severe
async-pool/no-hook/wasm-to-host - nop - async-typed
time: [27.442 ns 27.528 ns 27.638 ns]
change: [+7.5215% +9.9795% +12.266%] (p = 0.00 < 0.05)
Performance has regressed.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
async-pool/no-hook/wasm-to-host - nop-params-and-results - async-typed
time: [29.014 ns 29.148 ns 29.312 ns]
change: [+2.0227% +3.4722% +4.9047%] (p = 0.00 < 0.05)
Performance has regressed.
Found 7 outliers among 100 measurements (7.00%)
6 (6.00%) high mild
1 (1.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - typed
time: [6.7916 ns 6.8116 ns 6.8325 ns]
change: [+20.937% +22.050% +23.281%] (p = 0.00 < 0.05)
Performance has regressed.
Found 11 outliers among 100 measurements (11.00%)
5 (5.00%) high mild
6 (6.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - typed
time: [15.917 ns 15.975 ns 16.051 ns]
change: [+4.6404% +6.4217% +8.3075%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
5 (5.00%) high mild
11 (11.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - untyped
time: [21.558 ns 21.612 ns 21.679 ns]
change: [+8.1158% +9.1409% +10.217%] (p = 0.00 < 0.05)
Performance has regressed.
Found 9 outliers among 100 measurements (9.00%)
2 (2.00%) high mild
7 (7.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - untyped
time: [42.475 ns 42.614 ns 42.775 ns]
change: [-6.3613% -4.4709% -2.7647%] (p = 0.00 < 0.05)
Performance has improved.
Found 18 outliers among 100 measurements (18.00%)
3 (3.00%) high mild
15 (15.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - unchecked
time: [11.150 ns 11.195 ns 11.247 ns]
change: [+74.424% +77.056% +79.811%] (p = 0.00 < 0.05)
Performance has regressed.
Found 14 outliers among 100 measurements (14.00%)
3 (3.00%) high mild
11 (11.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - unchecked
time: [11.639 ns 11.695 ns 11.760 ns]
change: [-30.212% -29.023% -27.954%] (p = 0.00 < 0.05)
Performance has improved.
Found 15 outliers among 100 measurements (15.00%)
7 (7.00%) high mild
8 (8.00%) high severe
async-pool/hook-sync/wasm-to-host - nop - async-typed
time: [27.480 ns 27.712 ns 27.984 ns]
change: [+2.9764% +6.5061% +9.8914%] (p = 0.00 < 0.05)
Performance has regressed.
Found 8 outliers among 100 measurements (8.00%)
6 (6.00%) high mild
2 (2.00%) high severe
async-pool/hook-sync/wasm-to-host - nop-params-and-results - async-typed
time: [29.218 ns 29.380 ns 29.600 ns]
change: [+5.2283% +7.7247% +10.822%] (p = 0.00 < 0.05)
Performance has regressed.
Found 16 outliers among 100 measurements (16.00%)
2 (2.00%) high mild
14 (14.00%) high severe
```
</details>
* Add s390x support for frame pointer-based stack walking
* wasmtime: Allow `Caller::get_export` to get all exports
* fuzzing: Add a fuzz target to check that our stack traces are correct
We generate Wasm modules that keep track of their own stack as they call and
return between functions, and then we periodically check that if the host
captures a backtrace, it matches what the Wasm module has recorded.
* Remove VM offsets for `VMHostFuncContext` since it isn't used by JIT code
* Add doc comment with stack walking implementation notes
* Document the extra state that can be passed to `wasmtime_runtime::Backtrace` methods
* Add extensive comments for stack walking function
* Factor architecture-specific bits of stack walking out into modules
* Initialize store-related fields in a vmctx to null when there is no store yet
Rather than leaving them as uninitialized data.
* Use `set_callee` instead of manually setting the vmctx field
* Use a more informative compile error message for unsupported architectures
* Document unsafety of `prepare_host_to_wasm_trampoline`
* Use `bti c` instead of `hint #34` in inline aarch64 assembly
* Remove outdated TODO comment
* Remove setting of `last_wasm_exit_fp` in `set_jit_trap`
This is no longer needed as the value is plumbed through to the backtrace code
directly now.
* Only set the stack limit once, in the face of re-entrancy into Wasm
* Add comments for s390x-specific stack walking bits
* Use the helper macro for all libcalls
If we forget to use it, and then trigger a GC from the libcall, that means we
could miss stack frames when walking the stack, fail to find live GC refs, and
then get use after free bugs. Much less risky to always use the helper macro
that takes care of all of that for us.
* Use the `asm_sym!` macro in Wasm-to-libcall trampolines
This macro handles the macOS-specific underscore prefix stuff for us.
* wasmtime: add size and align to `externref` assertion error message
* Extend the `stacks` fuzzer to have host frames in between Wasm frames
This way we get one or more contiguous sequences of Wasm frames on the stack,
instead of exactly one.
* Add documentation for aarch64-specific backtrace helpers
* Clarify that we only support little-endian aarch64 in trampoline comment
* Use `.machine z13` in s390x assembly file
Since apparently our CI machines have pretty old assemblers that don't have
`.machine z14`. This should be fine though since these trampolines don't make
use of anything that is introduced in z14.
* Fix aarch64 build
* Fix macOS build
* Document the `asm_sym!` macro
* Add windows support to the `wasmtime-asm-macros` crate
* Add windows support to host<--->Wasm trampolines
* Fix trap handler build on windows
* Run `rustfmt` on s390x trampoline source file
* Temporarily disable some assertions about a trap's backtrace in the component model tests
Follow up to re-enable this and fix the associated issue:
https://github.com/bytecodealliance/wasmtime/issues/4535
* Refactor libcall definitions with less macros
This refactors the `libcall!` macro to use the
`foreach_builtin_function!` macro to define all of the trampolines.
Additionally the macro surrounding each libcall itself is no longer
necessary and helps avoid too many macros.
* Use `VMOpaqueContext::from_vm_host_func_context` in `VMHostFuncContext::new`
* Move `backtrace` module to be submodule of `traphandlers`
This avoids making some things `pub(crate)` in `traphandlers` that really
shouldn't be.
* Fix macOS aarch64 build
* Use "i64" instead of "word" in aarch64-specific file
* Save/restore entry SP and exit FP/return pointer in the face of panicking imported host functions
Also clean up assertions surrounding our saved entry/exit registers.
* Put "typed" vs "untyped" in the same position of call benchmark names
Regardless if we are doing wasm-to-host or host-to-wasm
* Fix stacks test case generator build for new `wasm-encoder`
* Fix build for s390x
* Expand libcalls in s390x asm
* Disable more parts of component tests now that backtrace assertions are a bit tighter
* Remove assertion that can maybe fail on s390x
Co-authored-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Co-authored-by: Alex Crichton <alex@alexcrichton.com>
|
||
|
|
601e8f3094 |
Remove dependency on the region crate (#4407)
This commit removes Wasmtime's dependency on the `region` crate. The motivation for this came about when I was updating dependencies and saw that `region` had a new major version at 3.0.0 as opposed to our currently used 2.3 track. In reviewing the use cases of `region` within Wasmtime I found two trends in particular which motivated this commit: * Some unix-specific areas of `wasmtime_runtime` use `rustix::mm::mprotect` instead of `region::protect` already. This means that the usage of `region::protect` for changing virtual memory protections was already inconsistent. * Many uses of `region::protect` were already in unix-specific regions which could make use of `rustix`. Overall I opted to remove the dependency on the `region` crate to avoid chasing its versions over time. Unix-specific changes of protections were easily changed to `rustix::mm::mprotect`. There were two locations where a windows/unix split is now required and I subjectively ruled "that seems ok". Finally removing `region` also meant that the "what is the current page size" query needed to be inlined into `wasmtime_runtime`, which I have also subjectively ruled "that seems fine". Finally one final refactoring here was that the `unix.rs` and `linux.rs` split for the pooling allocator was merged. These two files already only differed in one function so I slapped a `cfg_if!` in there to help reduce the duplication. |
||
|
|
77e06213b7 |
Refactor the internals of traps in wasmtime_runtime (#4326)
This commit is a small refactoring of `wasmtime_runtime::Trap` and various internals. The `Trap` structure is now a reason plus backtrace, and the old `Trap` enum is mostly in `TrapReason` now. Additionally all `Trap`-returning methods of `wasmtime_runtime` are changed to returning a `TrapCode` to indicate that they never capture a backtrace. Finally the `UnwindReason` internally now no longer duplicates the trap reasons, instead only having two variants of "panic" and "trap". The motivation for this commit is mostly just cleaning up trap internals and removing the need for methods like `wasmtime_runtime::Trap::insert_backtrace` to leave it only happening at the `wasmtime` layer. |
||
|
|
2b52f47b83 |
Add shared memories (#4187)
* Add shared memories This change adds the ability to use shared memories in Wasmtime when the [threads proposal] is enabled. Shared memories are annotated as `shared` in the WebAssembly syntax, e.g., `(memory 1 1 shared)`, and are protected from concurrent access during `memory.size` and `memory.grow`. [threads proposal]: https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md In order to implement this in Wasmtime, there are two main cases to cover: - a program may simply create a shared memory and possibly export it; this means that Wasmtime itself must be able to create shared memories - a user may create a shared memory externally and pass it in as an import during instantiation; this is the case when the program contains code like `(import "env" "memory" (memory 1 1 shared))`--this case is handled by a new Wasmtime API type--`SharedMemory` Because of the first case, this change allows any of the current memory-creation mechanisms to work as-is. Wasmtime can still create either static or dynamic memories in either on-demand or pooling modes, and any of these memories can be considered shared. When shared, the `Memory` runtime container will lock appropriately during `memory.size` and `memory.grow` operations; since all memories use this container, it is an ideal place for implementing the locking once and once only. The second case is covered by the new `SharedMemory` structure. It uses the same `Mmap` allocation under the hood as non-shared memories, but allows the user to perform the allocation externally to Wasmtime and share the memory across threads (via an `Arc`). The pointer address to the actual memory is carefully wired through and owned by the `SharedMemory` structure itself. This means that there are differing views of where to access the pointer (i.e., `VMMemoryDefinition`): for owned memories (the default), the `VMMemoryDefinition` is stored directly by the `VMContext`; in the `SharedMemory` case, however, this `VMContext` must point to this separate structure. To ensure that the `VMContext` can always point to the correct `VMMemoryDefinition`, this change alters the `VMContext` structure. Since a `SharedMemory` owns its own `VMMemoryDefinition`, the `defined_memories` table in the `VMContext` becomes a sequence of pointers--in the shared memory case, they point to the `VMMemoryDefinition` owned by the `SharedMemory` and in the owned memory case (i.e., not shared) they point to `VMMemoryDefinition`s stored in a new table, `owned_memories`. This change adds an additional indirection (through the `*mut VMMemoryDefinition` pointer) that could add overhead. Using an imported memory as a proxy, we measured a 1-3% overhead of this approach on the `pulldown-cmark` benchmark. To avoid this, Cranelift-generated code will special-case the owned memory access (i.e., load a pointer directly to the `owned_memories` entry) for `memory.size` so that only shared memories (and imported memories, as before) incur the indirection cost. * review: remove thread feature check * review: swap wasmtime-types dependency for existing wasmtime-environ use * review: remove unused VMMemoryUnion * review: reword cross-engine error message * review: improve tests * review: refactor to separate prevent Memory <-> SharedMemory conversion * review: into_shared_memory -> as_shared_memory * review: remove commented out code * review: limit shared min/max to 32 bits * review: skip imported memories * review: imported memories are not owned * review: remove TODO * review: document unsafe send + sync * review: add limiter assertion * review: remove TODO * review: improve tests * review: fix doc test * fix: fixes based on discussion with Alex This changes several key parts: - adds memory indexes to imports and exports - makes `VMMemoryDefinition::current_length` an atomic usize * review: add `Extern::SharedMemory` * review: remove TODO * review: atomically load from VMMemoryDescription in JIT-generated code * review: add test probing the last available memory slot across threads * fix: move assertion to new location due to rebase * fix: doc link * fix: add TODOs to c-api * fix: broken doc link * fix: modify pooling allocator messages in tests * review: make owned_memory_index panic instead of returning an option * review: clarify calculation of num_owned_memories * review: move 'use' to top of file * review: change '*const [u8]' to '*mut [u8]' * review: remove TODO * review: avoid hard-coding memory index * review: remove 'preallocation' parameter from 'Memory::_new' * fix: component model memory length * review: check that shared memory plans are static * review: ignore growth limits for shared memory * review: improve atomic store comment * review: add FIXME for memory growth failure * review: add comment about absence of bounds-checked 'memory.size' * review: make 'current_length()' doc comment more precise * review: more comments related to memory.size non-determinism * review: make 'vmmemory' unreachable for shared memory * review: move code around * review: thread plan through to 'wrap()' * review: disallow shared memory allocation with the pooling allocator |
||
|
|
2af358dd9c |
Add a VMComponentContext type and create it on instantiation (#4215)
* Add a `VMComponentContext` type and create it on instantiation This commit fills out the `wasmtime-runtime` crate's support for `VMComponentContext` and creates it as part of the instantiation process. This moves a few maps that were temporarily allocated in an `InstanceData` into the `VMComponentContext` and additionally reads the canonical options data from there instead. This type still won't be used in its "full glory" until the lowering of host functions is completely implemented, however, which will be coming in a future commit. * Remove `DerefMut` implementation * Rebase conflicts |
||
|
|
2a4851ad2b |
Change some VMContext pointers to () pointers (#4190)
* Change some `VMContext` pointers to `()` pointers This commit is motivated by my work on the component model implementation for imported functions. Currently all context pointers in wasm are `*mut VMContext` but with the component model my plan is to make some pointers instead along the lines of `*mut VMComponentContext`. In doing this though one worry I have is breaking what has otherwise been a core invariant of Wasmtime for quite some time, subtly introducing bugs by accident. To help assuage my worry I've opted here to erase knowledge of `*mut VMContext` where possible. Instead where applicable a context pointer is simply known as `*mut ()` and the embedder doesn't actually know anything about this context beyond the value of the pointer. This will help prevent Wasmtime from accidentally ever trying to interpret this context pointer as an actual `VMContext` when it might instead be a `VMComponentContext`. Overall this was a pretty smooth transition. The main change here is that the `VMTrampoline` (now sporting more docs) has its first argument changed to `*mut ()`. The second argument, the caller context, is still configured as `*mut VMContext` though because all functions are always called from wasm still. Eventually for component-to-component calls I think we'll probably "fake" the second argument as the same as the first argument, losing track of the original caller, as an intentional way of isolating components from each other. Along the way there are a few host locations which do actually assume that the first argument is indeed a `VMContext`. These are valid assumptions that are upheld from a correct implementation, but I opted to add a "magic" field to `VMContext` to assert this in debug mode. This new "magic" field is inintialized during normal vmcontext initialization and it's checked whenever a `VMContext` is reinterpreted as an `Instance` (but only in debug mode). My hope here is to catch any future accidental mistakes, if ever. * Use a VMOpaqueContext wrapper * Fix typos |
||
|
|
3f9bff17c8 |
Support disabling backtraces at compile time (#3932)
* Support disabling backtraces at compile time This commit adds support to Wasmtime to disable, at compile time, the gathering of backtraces on traps. The `wasmtime` crate now sports a `wasm-backtrace` feature which, when disabled, will mean that backtraces are never collected at compile time nor are unwinding tables inserted into compiled objects. The motivation for this commit stems from the fact that generating a backtrace is quite a slow operation. Currently backtrace generation is done with libunwind and `_Unwind_Backtrace` typically found in glibc or other system libraries. When thousands of modules are loaded into the same process though this means that the initial backtrace can take nearly half a second and all subsequent backtraces can take upwards of hundreds of milliseconds. Relative to all other operations in Wasmtime this is extremely expensive at this time. In the future we'd like to implement a more performant backtrace scheme but such an implementation would require coordination with Cranelift and is a big chunk of work that may take some time, so in the meantime if embedders don't need a backtrace they can still use this option to disable backtraces at compile time and avoid the performance pitfalls of collecting backtraces. In general I tried to originally make this a runtime configuration option but ended up opting for a compile-time option because `Trap::new` otherwise has no arguments and always captures a backtrace. By making this a compile-time option it was possible to configure, statically, the behavior of `Trap::new`. Additionally I also tried to minimize the amount of `#[cfg]` necessary by largely only having it at the producer and consumer sites. Also a noteworthy restriction of this implementation is that if backtrace support is disabled at compile time then reference types support will be unconditionally disabled at runtime. With backtrace support disabled there's no way to trace the stack of wasm frames which means that GC can't happen given our current implementation. * Always enable backtraces for the C API |
||
|
|
c22033bf93 |
Delete historical interruptable support in Wasmtime (#3925)
* Delete historical interruptable support in Wasmtime This commit removes the `Config::interruptable` configuration along with the `InterruptHandle` type from the `wasmtime` crate. The original support for adding interruption to WebAssembly was added pretty early on in the history of Wasmtime when there was no other method to prevent an infinite loop from the host. Nowadays, however, there are alternative methods for interruption such as fuel or epoch-based interruption. One of the major downsides of `Config::interruptable` is that even when it's not enabled it forces an atomic swap to happen when entering WebAssembly code. This technically could be a non-atomic swap if the configuration option isn't enabled but that produces even more branch-y code on entry into WebAssembly which is already something we try to optimize. Calling into WebAssembly is on the order of a dozens of nanoseconds at this time and an atomic swap, even uncontended, can add up to 5ns on some platforms. The main goal of this PR is to remove this atomic swap on entry into WebAssembly. This is done by removing the `Config::interruptable` field entirely, moving all existing consumers to epochs instead which are suitable for the same purposes. This means that the stack overflow check is no longer entangled with the interruption check and perhaps one day we could continue to optimize that further as well. Some consequences of this change are: * Epochs are now the only method of remote-thread interruption. * There are no more Wasmtime traps that produces the `Interrupted` trap code, although we may wish to move future traps to this so I left it in place. * The C API support for interrupt handles was also removed and bindings for epoch methods were added. * Function-entry checks for interruption are a tiny bit less efficient since one check is performed for the stack limit and a second is performed for the epoch as opposed to the `Config::interruptable` style of bundling the stack limit and the interrupt check in one. It's expected though that this is likely to not really be measurable. * The old `VMInterrupts` structure is renamed to `VMRuntimeLimits`. |
||
|
|
15bb0c6903 |
Remove the ModuleLimits pooling configuration structure (#3837)
* Remove the `ModuleLimits` pooling configuration structure
This commit is an attempt to improve the usability of the pooling
allocator by removing the need to configure a `ModuleLimits` structure.
Internally this structure has limits on all forms of wasm constructs but
this largely bottoms out in the size of an allocation for an instance in
the instance pooling allocator. Maintaining this list of limits can be
cumbersome as modules may get tweaked over time and there's otherwise no
real reason to limit the number of globals in a module since the main
goal is to limit the memory consumption of a `VMContext` which can be
done with a memory allocation limit rather than fine-tuned control over
each maximum and minimum.
The new approach taken in this commit is to remove `ModuleLimits`. Some
fields, such as `tables`, `table_elements` , `memories`, and
`memory_pages` are moved to `InstanceLimits` since they're still
enforced at runtime. A new field `size` is added to `InstanceLimits`
which indicates, in bytes, the maximum size of the `VMContext`
allocation. If the size of a `VMContext` for a module exceeds this value
then instantiation will fail.
This involved adding a few more checks to `{Table, Memory}::new_static`
to ensure that the minimum size is able to fit in the allocation, since
previously modules were validated at compile time of the module that
everything fit and that validation no longer happens (it happens at
runtime).
A consequence of this commit is that Wasmtime will have no built-in way
to reject modules at compile time if they'll fail to be instantiated
within a particular pooling allocator configuration. Instead a module
must attempt instantiation see if a failure happens.
* Fix benchmark compiles
* Fix some doc links
* Fix a panic by ensuring modules have limited tables/memories
* Review comments
* Add back validation at `Module` time instantiation is possible
This allows for getting an early signal at compile time that a module
will never be instantiable in an engine with matching settings.
* Provide a better error message when sizes are exceeded
Improve the error message when an instance size exceeds the maximum by
providing a breakdown of where the bytes are all going and why the large
size is being requested.
* Try to fix test in qemu
* Flag new test as 64-bit only
Sizes are all specific to 64-bit right now
|
||
|
|
bbd4a4a500 |
Enable copy-on-write heap initialization by default (#3825)
* Enable copy-on-write heap initialization by default This commit enables the `Config::memfd` feature by default now that it's been fuzzed for a few weeks on oss-fuzz, and will continue to be fuzzed leading up to the next release of Wasmtime in early March. The documentation of the `Config` option has been updated as well as adding a CLI flag to disable the feature. * Remove ubiquitous "memfd" terminology Switch instead to forms of "memory image" or "cow" or some combination thereof. * Update new option names |
||
|
|
4ed353a7e1 |
Extract jit_int.rs and most of jitdump_linux.rs for use outside of wasmtime (#2744)
* Extract gdb jit_int into wasmtime-jit-debug * Move a big chunk of the jitdump code to wasmtime-jit-debug * Fix doc markdown in perf_jitdump.rs |
||
|
|
b438617e12 |
Further minor optimizations to instantiation (#3791)
* Shrink the size of `FuncData` Before this commit on a 64-bit system the `FuncData` type had a size of 88 bytes and after this commit it has a size of 32 bytes. A `FuncData` is required for all host functions in a store, including those inserted from a `Linker` into a store used during linking. This means that instantiation ends up creating a nontrivial number of these types and pushing them into the store. Looking at some profiles there were some surprisingly expensive movements of `FuncData` from the stack to a vector for moves-by-value generated by Rust. Shrinking this type enables more efficient code to be generated and additionally means less storage is needed in a store's function array. For instantiating the spidermonkey and rustpython modules this improves instantiation by 10% since they each import a fair number of host functions and the speedup here is relative to the number of items imported. * Use `ptr::copy_nonoverlapping` during initialization Prevoiusly `ptr::copy` was used for copying imports into place which translates to `memmove`, but `ptr::copy_nonoverlapping` can be used here since it's statically known these areas don't overlap. While this doesn't end up having a performance difference it's something I kept noticing while looking at the disassembly of `initialize_vmcontext` so I figured I'd go ahead and implement. * Indirect shared signature ids in the VMContext This commit is a small improvement for the instantiation time of modules by avoiding copying a list of `VMSharedSignatureIndex` entries into each `VMContext`, instead building one inside of a module and sharing that amongst all instances. This involves less lookups at instantiation time and less movement of data during instantiation. The downside is that type-checks on `call_indirect` now involve an additionally load, but I'm assuming that these are somewhat pessimized enough as-is that the runtime impact won't be much there. For instantiation performance this is a 5-10% win with rustpyhon/spidermonky instantiation. This should also reduce the size of each `VMContext` for an instantiation since signatures are no longer stored inline but shared amongst all instances with one module. Note that one subtle change here is that the array of `VMSharedSignatureIndex` was previously indexed by `TypeIndex`, and now it's indexed by `SignaturedIndex` which is a deduplicated form of `TypeIndex`. This is done because we already had a list of those lying around in `Module`, so it was easier to reuse that than to build a separate array and store it somewhere. * Reserve space in `Store<T>` with `InstancePre` This commit updates the instantiation process to reserve space in a `Store<T>` for the functions that an `InstancePre<T>`, as part of instantiation, will insert into it. Using an `InstancePre<T>` to instantiate allows pre-computing the number of host functions that will be inserted into a store, and by pre-reserving space we can avoid costly reallocations during instantiation by ensuring the function vector has enough space to fit everything during the instantiation process. Overall this makes instantiation of rustpython/spidermonkey about 8% faster locally. * Fix tests * Use checked arithmetic |
||
|
|
c0c368d151 |
Use mmap'd *.cwasm as a source for memory initialization images (#3787)
* Skip memfd creation with precompiled modules This commit updates the memfd support internally to not actually use a memfd if a compiled module originally came from disk via the `wasmtime::Module::deserialize_file` API. In this situation we already have a file descriptor open and there's no need to copy a module's heap image to a new file descriptor. To facilitate a new source of `mmap` the currently-memfd-specific-logic of creating a heap image is generalized to a new form of `MemoryInitialization` which is attempted for all modules at module-compile-time. This means that the serialized artifact to disk will have the memory image in its entirety waiting for us. Furthermore the memory image is ensured to be padded and aligned carefully to the target system's page size, notably meaning that the data section in the final object file is page-aligned and the size of the data section is also page aligned. This means that when a precompiled module is mapped from disk we can reuse the underlying `File` to mmap all initial memory images. This means that the offset-within-the-memory-mapped-file can differ for memfd-vs-not, but that's just another piece of state to track in the memfd implementation. In the limit this waters down the term "memfd" for this technique of quickly initializing memory because we no longer use memfd unconditionally (only when the backing file isn't available). This does however open up an avenue in the future to porting this support to other OSes because while `memfd_create` is Linux-specific both macOS and Windows support mapping a file with copy-on-write. This porting isn't done in this PR and is left for a future refactoring. Closes #3758 * Enable "memfd" support on all unix systems Cordon off the Linux-specific bits and enable the memfd support to compile and run on platforms like macOS which have a Linux-like `mmap`. This only works if a module is mapped from a precompiled module file on disk, but that's better than not supporting it at all! * Fix linux compile * Use `Arc<File>` instead of `MmapVecFileBacking` * Use a named struct instead of mysterious tuples * Comment about unsafety in `Module::deserialize_file` * Fix tests * Fix uffd compile * Always align data segments No need to have conditional alignment since their sizes are all aligned anyway * Update comment in build.rs * Use rustix, not `region` * Fix some confusing logic/names around memory indexes These functions all work with memory indexes, not specifically defined memory indexes. |
||
|
|
39a52ceb4f |
Implement lazy funcref table and anyfunc initialization. (#3733)
During instance initialization, we build two sorts of arrays eagerly:
- We create an "anyfunc" (a `VMCallerCheckedAnyfunc`) for every function
in an instance.
- We initialize every element of a funcref table with an initializer to
a pointer to one of these anyfuncs.
Most instances will not touch (via call_indirect or table.get) all
funcref table elements. And most anyfuncs will never be referenced,
because most functions are never placed in tables or used with
`ref.func`. Thus, both of these initialization tasks are quite wasteful.
Profiling shows that a significant fraction of the remaining
instance-initialization time after our other recent optimizations is
going into these two tasks.
This PR implements two basic ideas:
- The anyfunc array can be lazily initialized as long as we retain the
information needed to do so. For now, in this PR, we just recreate the
anyfunc whenever a pointer is taken to it, because doing so is fast
enough; in the future we could keep some state to know whether the
anyfunc has been written yet and skip this work if redundant.
This technique allows us to leave the anyfunc array as uninitialized
memory, which can be a significant savings. Filling it with
initialized anyfuncs is very expensive, but even zeroing it is
expensive: e.g. in a large module, it can be >500KB.
- A funcref table can be lazily initialized as long as we retain a link
to its corresponding instance and function index for each element. A
zero in a table element means "uninitialized", and a slowpath does the
initialization.
Funcref tables are a little tricky because funcrefs can be null. We need
to distinguish "element was initially non-null, but user stored explicit
null later" from "element never touched" (ie the lazy init should not
blow away an explicitly stored null). We solve this by stealing the LSB
from every funcref (anyfunc pointer): when the LSB is set, the funcref
is initialized and we don't hit the lazy-init slowpath. We insert the
bit on storing to the table and mask it off after loading.
We do have to set up a precomputed array of `FuncIndex`s for the table
in order for this to work. We do this as part of the module compilation.
This PR also refactors the way that the runtime crate gains access to
information computed during module compilation.
Performance effect measured with in-tree benches/instantiation.rs, using
SpiderMonkey built for WASI, and with memfd enabled:
```
BEFORE:
sequential/default/spidermonkey.wasm
time: [68.569 us 68.696 us 68.856 us]
sequential/pooling/spidermonkey.wasm
time: [69.406 us 69.435 us 69.465 us]
parallel/default/spidermonkey.wasm: with 1 background thread
time: [69.444 us 69.470 us 69.497 us]
parallel/default/spidermonkey.wasm: with 16 background threads
time: [183.72 us 184.31 us 184.89 us]
parallel/pooling/spidermonkey.wasm: with 1 background thread
time: [69.018 us 69.070 us 69.136 us]
parallel/pooling/spidermonkey.wasm: with 16 background threads
time: [326.81 us 337.32 us 347.01 us]
WITH THIS PR:
sequential/default/spidermonkey.wasm
time: [6.7821 us 6.8096 us 6.8397 us]
change: [-90.245% -90.193% -90.142%] (p = 0.00 < 0.05)
Performance has improved.
sequential/pooling/spidermonkey.wasm
time: [3.0410 us 3.0558 us 3.0724 us]
change: [-95.566% -95.552% -95.537%] (p = 0.00 < 0.05)
Performance has improved.
parallel/default/spidermonkey.wasm: with 1 background thread
time: [7.2643 us 7.2689 us 7.2735 us]
change: [-89.541% -89.533% -89.525%] (p = 0.00 < 0.05)
Performance has improved.
parallel/default/spidermonkey.wasm: with 16 background threads
time: [147.36 us 148.99 us 150.74 us]
change: [-18.997% -18.081% -17.285%] (p = 0.00 < 0.05)
Performance has improved.
parallel/pooling/spidermonkey.wasm: with 1 background thread
time: [3.1009 us 3.1021 us 3.1033 us]
change: [-95.517% -95.511% -95.506%] (p = 0.00 < 0.05)
Performance has improved.
parallel/pooling/spidermonkey.wasm: with 16 background threads
time: [49.449 us 50.475 us 51.540 us]
change: [-85.423% -84.964% -84.465%] (p = 0.00 < 0.05)
Performance has improved.
```
So an improvement of something like 80-95% for a very large module (7420
functions in its one funcref table, 31928 functions total).
|
||
|
|
8ed79c8f57 |
memfd: Reduce some syscalls in the on-demand case (#3757)
* memfd: Reduce some syscalls in the on-demand case This tweaks the internal organization of the `MemFdSlot` to avoid some syscalls in the default case as well as opportunistically in the pooling case. The two cases added here are: * A `MemFdSlot` is now created with a specified initial size. For pooling this is 0 but for the on-demand case this can be non-zero. * When `instantiate` is called with no prior image and the sizes match (as will be the case for on-demand allocation) then `mprotect` is skipped entirely. * In the `clear_and_remain-ready` case the `mprotect` is skipped if the heap wasn't grown at all. This should avoid ever using `mprotect` unnecessarily and makes the ranges we `mprotect` a bit smaller as well. * Review comments * Tweak allow to apply to whole crate |
||
|
|
01e6bb81fb | Review feedback. | ||
|
|
0ff8f6ab20 | Make build-config magic use memfd by default. | ||
|
|
982df2f2e5 | Review feedback. | ||
|
|
570dee63f3 | Use MemFdSlot in the on-demand allocator as well. | ||
|
|
b73ac83c37 |
Add a pooling allocator mode based on copy-on-write mappings of memfds.
As first suggested by Jan on the Zulip here [1], a cheap and effective way to obtain copy-on-write semantics of a "backing image" for a Wasm memory is to mmap a file with `MAP_PRIVATE`. The `memfd` mechanism provided by the Linux kernel allows us to create anonymous, in-memory-only files that we can use for this mapping, so we can construct the image contents on-the-fly then effectively create a CoW overlay. Furthermore, and importantly, `madvise(MADV_DONTNEED, ...)` will discard the CoW overlay, returning the mapping to its original state. By itself this is almost enough for a very fast instantiation-termination loop of the same image over and over, without changing the address space mapping at all (which is expensive). The only missing bit is how to implement heap *growth*. But here memfds can help us again: if we create another anonymous file and map it where the extended parts of the heap would go, we can take advantage of the fact that a `mmap()` mapping can be *larger than the file itself*, with accesses beyond the end generating a `SIGBUS`, and the fact that we can cheaply resize the file with `ftruncate`, even after a mapping exists. So we can map the "heap extension" file once with the maximum memory-slot size and grow the memfd itself as `memory.grow` operations occur. The above CoW technique and heap-growth technique together allow us a fastpath of `madvise()` and `ftruncate()` only when we re-instantiate the same module over and over, as long as we can reuse the same slot. This fastpath avoids all whole-process address-space locks in the Linux kernel, which should mean it is highly scalable. It also avoids the cost of copying data on read, as the `uffd` heap backend does when servicing pagefaults; the kernel's own optimized CoW logic (same as used by all file mmaps) is used instead. [1] https://bytecodealliance.zulipchat.com/#narrow/stream/206238-general/topic/Copy.20on.20write.20based.20instance.20reuse/near/266657772 |
||
|
|
8a55b5c563 |
Add epoch-based interruption for cooperative async timeslicing.
This PR introduces a new way of performing cooperative timeslicing that is intended to replace the "fuel" mechanism. The tradeoff is that this mechanism interrupts with less precision: not at deterministic points where fuel runs out, but rather when the Engine enters a new epoch. The generated code instrumentation is substantially faster, however, because it does not need to do as much work as when tracking fuel; it only loads the global "epoch counter" and does a compare-and-branch at backedges and function prologues. This change has been measured as ~twice as fast as fuel-based timeslicing for some workloads, especially control-flow-intensive workloads such as the SpiderMonkey JS interpreter on Wasm/WASI. The intended interface is that the embedder of the `Engine` performs an `engine.increment_epoch()` call periodically, e.g. once per millisecond. An async invocation of a Wasm guest on a `Store` can specify a number of epoch-ticks that are allowed before an async yield back to the executor's event loop. (The initial amount and automatic "refills" are configured on the `Store`, just as for fuel.) This call does only signal-safe work (it increments an `AtomicU64`) so could be invoked from a periodic signal, or from a thread that wakes up once per period. |
||
|
|
2afd6900f4 | runtime: expose DefaultMemoryCreator (#3670) | ||
|
|
58aab85680 |
Add the pooling-allocator feature.
This commit adds the `pooling-allocator` feature to both the `wasmtime` and `wasmtime-runtime` crates. The feature controls whether or not the pooling allocator implementation is built into the runtime and exposed as a supported instance allocation strategy in the wasmtime API. The feature is on by default for the `wasmtime` crate. Closes #3513. |
||
|
|
a1301f8dae | add table_grow_failed | ||
|
|
a5007f318f | runtime: use anyhow::Error instead of Box<dyn std::error::Error...> | ||
|
|
147c8f8ed7 | rename | ||
|
|
18a355e092 | give sychronous ResourceLimiter an async alternative | ||
|
|
bfdbd10a13 |
Add *_unchecked variants of Func APIs for the C API (#3350)
* Add `*_unchecked` variants of `Func` APIs for the C API This commit is what is hopefully going to be my last installment within the saga of optimizing function calls in/out of WebAssembly modules in the C API. This is yet another alternative approach to #3345 (sorry) but also contains everything necessary to make the C API fast. As in #3345 the general idea is just moving checks out of the call path in the same style of `TypedFunc`. This new strategy takes inspiration from previously learned attempts effectively "just" exposes how we previously passed `*mut u128` through trampolines for arguments/results. This storage format is formalized through a new `ValRaw` union that is exposed from the `wasmtime` crate. By doing this it made it relatively easy to expose two new APIs: * `Func::new_unchecked` * `Func::call_unchecked` These are the same as their checked equivalents except that they're `unsafe` and they work with `*mut ValRaw` rather than safe slices of `Val`. Working with these eschews type checks and such and requires callers/embedders to do the right thing. These two new functions are then exposed via the C API with new functions, enabling C to have a fast-path of calling/defining functions. This fast path is akin to `Func::wrap` in Rust, although that API can't be built in C due to C not having generics in the same way that Rust has. For some benchmarks, the benchmarks here are: * `nop` - Call a wasm function from the host that does nothing and returns nothing. * `i64` - Call a wasm function from the host, the wasm function calls a host function, and the host function returns an `i64` all the way out to the original caller. * `many` - Call a wasm function from the host, the wasm calls host function with 5 `i32` parameters, and then an `i64` result is returned back to the original host * `i64` host - just the overhead of the wasm calling the host, so the wasm calls the host function in a loop. * `many` host - same as `i64` host, but calling the `many` host function. All numbers in this table are in nanoseconds, and this is just one measurement as well so there's bound to be some variation in the precise numbers here. | Name | Rust | C (before) | C (after) | |-----------|------|------------|-----------| | nop | 19 | 112 | 25 | | i64 | 22 | 207 | 32 | | many | 27 | 189 | 34 | | i64 host | 2 | 38 | 5 | | many host | 7 | 75 | 8 | The main conclusion here is that the C API is significantly faster than before when using the `*_unchecked` variants of APIs. The Rust implementation is still the ceiling (or floor I guess?) for performance The main reason that C is slower than Rust is that a little bit more has to travel through memory where on the Rust side of things we can monomorphize and inline a bit more to get rid of that. Overall though the costs are way way down from where they were originally and I don't plan on doing a whole lot more myself at this time. There's various things we theoretically could do I've considered but implementation-wise I think they'll be much more weighty. * Tweak `wasmtime_externref_t` API comments |
||
|
|
87c33c2969 |
Remove wasmtime-environ's dependency on cranelift-codegen (#3199)
* Move `CompiledFunction` into wasmtime-cranelift This commit moves the `wasmtime_environ::CompiledFunction` type into the `wasmtime-cranelift` crate. This type has lots of Cranelift-specific pieces of compilation and doesn't need to be generated by all Wasmtime compilers. This replaces the usage in the `Compiler` trait with a `Box<Any>` type that each compiler can select. Each compiler must still produce a `FunctionInfo`, however, which is shared information we'll deserialize for each module. The `wasmtime-debug` crate is also folded into the `wasmtime-cranelift` crate as a result of this commit. One possibility was to move the `CompiledFunction` commit into its own crate and have `wasmtime-debug` depend on that, but since `wasmtime-debug` is Cranelift-specific at this time it didn't seem like it was too too necessary to keep it separate. If `wasmtime-debug` supports other backends in the future we can recreate a new crate, perhaps with it refactored to not depend on Cranelift. * Move wasmtime_environ::reference_type This now belongs in wasmtime-cranelift and nowhere else * Remove `Type` reexport in wasmtime-environ One less dependency on `cranelift-codegen`! * Remove `types` reexport from `wasmtime-environ` Less cranelift! * Remove `SourceLoc` from wasmtime-environ Change the `srcloc`, `start_srcloc`, and `end_srcloc` fields to a custom `FilePos` type instead of `ir::SourceLoc`. These are only used in a few places so there's not much to lose from an extra abstraction for these leaf use cases outside of cranelift. * Remove wasmtime-environ's dep on cranelift's `StackMap` This commit "clones" the `StackMap` data structure in to `wasmtime-environ` to have an independent representation that that chosen by Cranelift. This allows Wasmtime to decouple this runtime dependency of stack map information and let the two evolve independently, if necessary. An alternative would be to refactor cranelift's implementation into a separate crate and have wasmtime depend on that but it seemed a bit like overkill to do so and easier to clone just a few lines for this. * Define code offsets in wasmtime-environ with `u32` Don't use Cranelift's `binemit::CodeOffset` alias to define this field type since the `wasmtime-environ` crate will be losing the `cranelift-codegen` dependency soon. * Commit to using `cranelift-entity` in Wasmtime This commit removes the reexport of `cranelift-entity` from the `wasmtime-environ` crate and instead directly depends on the `cranelift-entity` crate in all referencing crates. The original reason for the reexport was to make cranelift version bumps easier since it's less versions to change, but nowadays we have a script to do that. Otherwise this encourages crates to use whatever they want from `cranelift-entity` since we'll always depend on the whole crate. It's expected that the `cranelift-entity` crate will continue to be a lean crate in dependencies and suitable for use at both runtime and compile time. Consequently there's no need to avoid its usage in Wasmtime at runtime, since "remove Cranelift at compile time" is primarily about the `cranelift-codegen` crate. * Remove most uses of `cranelift-codegen` in `wasmtime-environ` There's only one final use remaining, which is the reexport of `TrapCode`, which will get handled later. * Limit the glob-reexport of `cranelift_wasm` This commit removes the glob reexport of `cranelift-wasm` from the `wasmtime-environ` crate. This is intended to explicitly define what we're reexporting and is a transitionary step to curtail the amount of dependencies taken on `cranelift-wasm` throughout the codebase. For example some functions used by debuginfo mapping are better imported directly from the crate since they're Cranelift-specific. Note that this is intended to be a temporary state affairs, soon this reexport will be gone entirely. Additionally this commit reduces imports from `cranelift_wasm` and also primarily imports from `crate::wasm` within `wasmtime-environ` to get a better sense of what's imported from where and what will need to be shared. * Extract types from cranelift-wasm to cranelift-wasm-types This commit creates a new crate called `cranelift-wasm-types` and extracts type definitions from the `cranelift-wasm` crate into this new crate. The purpose of this crate is to be a shared definition of wasm types that can be shared both by compilers (like Cranelift) as well as wasm runtimes (e.g. Wasmtime). This new `cranelift-wasm-types` crate doesn't depend on `cranelift-codegen` and is the final step in severing the unconditional dependency from Wasmtime to `cranelift-codegen`. The final refactoring in this commit is to then reexport this crate from `wasmtime-environ`, delete the `cranelift-codegen` dependency, and then update all `use` paths to point to these new types. The main change of substance here is that the `TrapCode` enum is mirrored from Cranelift into this `cranelift-wasm-types` crate. While this unfortunately results in three definitions (one more which is non-exhaustive in Wasmtime itself) it's hopefully not too onerous and ideally something we can patch up in the future. * Get lightbeam compiling * Remove unnecessary dependency * Fix compile with uffd * Update publish script * Fix more uffd tests * Rename cranelift-wasm-types to wasmtime-types This reflects the purpose a bit more where it's types specifically intended for Wasmtime and its support. * Fix publish script |
||
|
|
8b4bdf92e2 |
make ResourceLimiter operate on Store data; add hooks for entering and exiting native code (#2952)
* wasmtime_runtime: move ResourceLimiter defaults into this crate In preparation of changing wasmtime::ResourceLimiter to be a re-export of this definition, because translating between two traits was causing problems elsewhere. * wasmtime: make ResourceLimiter a re-export of wasmtime_runtime::ResourceLimiter * refactor Store internals to support ResourceLimiter as part of store's data * add hooks for entering and exiting native code to Store * wasmtime-wast, fuzz: changes to adapt ResourceLimiter API * fix tests * wrap calls into wasm with entering/exiting exit hooks as well * the most trivial test found a bug, lets write some more * store: mark some methods as #[inline] on Store, StoreInner, StoreInnerMost Co-authored-By: Alex Crichton <alex@alexcrichton.com> * improve tests for the entering/exiting native hooks Co-authored-by: Alex Crichton <alex@alexcrichton.com> |
||
|
|
ff87f45604 | expose eager thread-local initialization by the Engine | ||
|
|
7a1b7cdf92 |
Implement RFC 11: Redesigning Wasmtime's APIs (#2897)
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread. |
||
|
|
f12b4c467c |
Add resource limiting to the Wasmtime API. (#2736)
* Add resource limiting to the Wasmtime API. This commit adds a `ResourceLimiter` trait to the Wasmtime API. When used in conjunction with `Store::new_with_limiter`, this can be used to monitor and prevent WebAssembly code from growing linear memories and tables. This is particularly useful when hosts need to take into account host resource usage to determine if WebAssembly code can consume more resources. A simple `StaticResourceLimiter` is also included with these changes that will simply limit the size of linear memories or tables for all instances created in the store based on static values. * Code review feedback. * Implemented `StoreLimits` and `StoreLimitsBuilder`. * Moved `max_instances`, `max_memories`, `max_tables` out of `Config` and into `StoreLimits`. * Moved storage of the limiter in the runtime into `Memory` and `Table`. * Made `InstanceAllocationRequest` use a reference to the limiter. * Updated docs. * Made `ResourceLimiterProxy` generic to remove a level of indirection. * Fixed the limiter not being used for `wasmtime::Memory` and `wasmtime::Table`. * Code review feedback and bug fix. * `Memory::new` now returns `Result<Self>` so that an error can be returned if the initial requested memory exceeds any limits placed on the store. * Changed an `Arc` to `Rc` as the `Arc` wasn't necessary. * Removed `Store` from the `ResourceLimiter` callbacks. Custom resource limiter implementations are free to capture any context they want, so no need to unnecessarily store a weak reference to `Store` from the proxy type. * Fixed a bug in the pooling instance allocator where an instance would be leaked from the pool. Previously, this would only have happened if the OS was unable to make the necessary linear memory available for the instance. With these changes, however, the instance might not be created due to limits placed on the store. We now properly deallocate the instance on error. * Added more tests, including one that covers the fix mentioned above. * Code review feedback. * Add another memory to `test_pooling_allocator_initial_limits_exceeded` to ensure a partially created instance is successfully deallocated. * Update some doc comments for better documentation of `Store` and `ResourceLimiter`. |
||
|
|
f8f51afac1 |
Split out fiber stacks from fibers.
This commit splits out a `FiberStack` from `Fiber`, allowing the instance allocator trait to return `FiberStack` rather than raw stack pointers. This keeps the stack creation mostly in `wasmtime_fiber`, but now the on-demand instance allocator can make use of it. The instance allocators no longer have to return a "not supported" error to indicate that the store should allocate its own fiber stack. This includes a bunch of cleanup in the instance allocator to scope stacks to the new "async" feature in the runtime. Closes #2708. |
||
|
|
918c012d00 |
Fix some issues around TLS management with async (#2709)
This commit fixes a few issues around managing the thread-local state of a wasmtime thread. We intentionally only have a singular TLS variable in the whole world, and the problem is that when stack-switching off an async thread we were not restoring the previous TLS state. This is necessary in two cases: * Futures aren't guaranteed to be polled/completed in a stack-like fashion. If a poll sees that a future isn't ready then we may resume execution in a previous wasm context that ends up needing the TLS information. * Futures can also cross threads (when the whole store crosses threads) and we need to save/restore TLS state from the thread we're coming from and the thread that we're going to. The stack switching issue necessitates some more glue around suspension and resumption of a stack to ensure we save/restore the TLS state on both sides. The thread issue, however, also necessitates that we use `#[inline(never)]` on TLS access functions and never have TLS borrows live across a function which could result in running arbitrary code (as was the case for the `tls::set` function. |
||
|
|
e71ccbf9bc |
Implement the pooling instance allocator.
This commit implements the pooling instance allocator. The allocation strategy can be set with `Config::with_allocation_strategy`. The pooling strategy uses the pooling instance allocator to preallocate a contiguous region of memory for instantiating modules that adhere to various limits. The intention of the pooling instance allocator is to reserve as much of the host address space needed for instantiating modules ahead of time and to reuse committed memory pages wherever possible. |
||
|
|
16ca5e16d9 |
Implement allocating fiber stacks for an instance allocator.
This commit implements allocating fiber stacks in an instance allocator. The on-demand instance allocator doesn't support custom stacks, so the implementation will use the allocation from `wasmtime-fiber` for the fiber stacks. In the future, the pooling instance allocator will return custom stacks to use on Linux and macOS. On Windows, the native fiber implementation will always be used. |
||
|
|
5beb81d02a |
Change how Instance stores instantiated memories in the runtime.
This commit changes `Instance` such that memories can be stored statically, with just a base pointer, size, maximum, and a callback to make memory accessible. Previously the memories were being stored as boxed trait objects, which would require the pooling allocator to do some unpleasant things to avoid allocations. With this change, the pooling allocator can simply define a memory for the instance without using a trait object. |
||
|
|
b58afbf849 |
Refactor module instantiation in the runtime.
This commit refactors module instantiation in the runtime to allow for different instance allocation strategy implementations. It adds an `InstanceAllocator` trait with the current implementation put behind the `OnDemandInstanceAllocator` struct. The Wasmtime API has been updated to allow a `Config` to have an instance allocation strategy set which will determine how instances get allocated. This change is in preparation for an alternative *pooling* instance allocator that can reserve all needed host process address space in advance. This commit also makes changes to the `wasmtime_environ` crate to represent compiled modules in a way that reduces copying at instantiation time. |
||
|
|
703762c49e |
Update support for the module linking proposal
This commit updates the various tooling used by wasmtime which has new updates to the module linking proposal. This is done primarily to sync with WebAssembly/module-linking#26. The main change implemented here is that wasmtime now supports creating instances from a set of values, nott just from instantiating a module. Additionally subtyping handling of modules with respect to imports is now properly handled by desugaring two-level imports to imports of instances. A number of small refactorings are included here as well, but most of them are in accordance with the changes to `wasmparser` and the updated binary format for module linking. |
||
|
|
243ab3b542 |
Remove the global variable associated with traps
This commit removes the global variable associated with wasm traps which stores frame information. The only purpose of this global is to help symbolicate `Trap`s created since we support creating a `Trap` without a `Store`. The global, however, is only used for wasm frames on the stack, and when wasm frames are on the stack we know that our thread local for "what was the last context" is set and configured. The change here is to hijack this thread-local some more to effectively store the `Store` inside of it. All frame information is then moved directly into `Store` and no longer lives off on the side in a global. Additionally support for registering/unregistering modules is now simplified because once a module is registered with a store it can never be unregistered. This has one slight functional change where if there are two instances of `Store` interleaving calls to wasm code on the stack we'll only be able to symbolicate one of them instead of both. That's arguably also a feature however because this is sort of a way to leak information across stores right now. Otherwise, though, this isn't intended to change any existing logic, but instead keep everything working as-is. |
||
|
|
c9e8889d47 | Update clippy annotation to use latest version (#2375) | ||
|
|
3887881800 |
Refactor how signatures/trampolines are stored in Store
This commit refactors where trampolines and signature information is stored within a `Store`, namely moving them from `wasmtime_runtime::Instance` instead to `Store` itself. The goal here is to remove an allocation inside of an `Instance` and make them a bit cheaper to create. Additionally this should open up future possibilities like not creating duplicate trampolines for signatures already in the `Store` when using `Func::new`. |
||
|
|
bffd54c016 |
wasmtime: Implement global.{get,set} for externref globals (#1969)
* wasmtime: Implement `global.{get,set}` for externref globals
We use libcalls to implement these -- unlike `table.{get,set}`, for which we
create inline JIT fast paths -- because no known toolchain actually uses
externref globals.
Part of #929
* wasmtime: Enable `{extern,func}ref` globals in the API
|
||
|
|
58bb5dd953 |
wasmtime: Add support for func.ref and table.grow with funcrefs
`funcref`s are implemented as `NonNull<VMCallerCheckedAnyfunc>`. This should be more efficient than using a `VMExternRef` that points at a `VMCallerCheckedAnyfunc` because it gets rid of an indirection, dynamic allocation, and some reference counting. Note that the null function reference is *NOT* a null pointer; it is a `VMCallerCheckedAnyfunc` that has a null `func_ptr` member. Part of #929 |
||
|
|
647d2b4231 |
Merge pull request #1832 from fitzgen/externref-stack-maps
externref: implement stack map-based garbage collection |