Commit Graph

148 Commits

Author SHA1 Message Date
Andrew Brown
6ebbab61b9 Update cfg-if dependency 2020-10-23 16:50:51 -07:00
Nick Fitzgerald
1532834f3e Merge pull request #2305 from alexcrichton/no-arc
Don't store `Arc<VMInterrupts>` in instances
2020-10-21 13:21:51 -07:00
Alex Crichton
461ed42772 Remove the finished_functions field in Instance
Turns out we don't actually need it anywhere any more! This removes an
allocation when instantiating.
2020-10-21 11:43:11 -07:00
Alex Crichton
04e85b044e Don't store Arc<VMInterrupts> in instances
Similar to other data structures owned by the `Store` there's no need
for `Instance` to have a strong `Arc` reference, instead it's sufficient
for `Store` to have the owning reference.
2020-10-21 11:42:57 -07:00
subtly
d91f0c3933 get pc for freebsd (#2270)
* get pc for freebsd

* whitespace :|

* fix; i386 to x86

* remove x86 since uc_mcontext isn't yet in libc

* freebsd build of rust uses libcc/unwind
2020-10-07 06:30:14 -05:00
Alex Crichton
9e87e45745 Update wasmparser, wast, and spec test suite (#2264)
This brings in a number of SIMD opcode renames, various other test suite
updates, as well as some new proposed SIMD opcodes too.
2020-10-05 13:51:16 -05:00
Alex Crichton
2c6841041d Validate modules while translating (#2059)
* Validate modules while translating

This commit is a change to cranelift-wasm to validate each function body
as it is translated. Additionally top-level module translation functions
will perform module validation. This commit builds on changes in
wasmparser to perform module validation interwtwined with parsing and
translation. This will be necessary for future wasm features such as
module linking where the type behind a function index, for example, can
be far away in another module. Additionally this also brings a nice
benefit where parsing the binary only happens once (instead of having an
up-front serial validation step) and validation can happen in parallel
for each function.

Most of the changes in this commit are plumbing to make sure everything
lines up right. The major functional change here is that module
compilation should be faster by validating in parallel (or skipping
function validation entirely in the case of a cache hit). Otherwise from
a user-facing perspective nothing should be that different.

This commit does mean that cranelift's translation now inherently
validates the input wasm module. This means that the Spidermonkey
integration of cranelift-wasm will also be validating the function as
it's being translated with cranelift. The associated PR for wasmparser
(bytecodealliance/wasmparser#62) provides the necessary tools to create
a `FuncValidator` for Gecko, but this is something I'll want careful
review for before landing!

* Read function operators until EOF

This way we can let the validator take care of any issues with
mismatched `end` instructions and/or trailing operators/bytes.
2020-10-05 11:02:01 -05:00
Pat Hickey
b10beeee01 dep gardening (#2233)
* wasmtime-profiling: latest object dep is 0.21.1

* latest gimli is 0.22

* bump cargo.lock
2020-09-26 00:49:28 -05:00
Alex Crichton
5e08eb3b83 Bump wasmtime to 0.20.0 (#2222)
At the same time bump cranelift crates to 0.67.0
2020-09-23 13:54:02 -05:00
Joshua Nelson
d28abad441 Upgrade to target-lexicon 0.11
This allows downstream library users to use `CDataModel` without having
to install two different versions of target-lexicon.
2020-09-15 11:40:09 -07:00
Alex Crichton
693c6ea771 wasmtime: Extract cranelift/lightbeam compilers to separate crates (#2117)
This commit extracts the two implementations of `Compiler` into two
separate crates, `wasmtime-cranelfit` and `wasmtime-lightbeam`. The
`wasmtime-jit` crate then depends on these two and instantiates them
appropriately. The goal here is to start reducing the weight of the
`wasmtime-environ` crate, which currently serves as a common set of
types between all `wasmtime-*` crates. Long-term I'd like to remove the
dependency on Cranelift from `wasmtime-environ`, but that's going to
take a lot more work.

In the meantime I figure it's a good way to get started by separating
out the lightbeam/cranelift function compilers from the
`wasmtime-environ` crate. We can continue to iterate on moving things
out in the future, too.
2020-08-20 11:34:31 +02:00
bjorn3
b5e24c8c67 Update object to 0.21.1 (#2144) 2020-08-19 15:14:26 -05:00
Alex Crichton
c7cd70fcec wasmtime: Refactor how imports are resolved (#2102)
This commit removes all import resolution handling from the
`wasmtime-jit` crate, instead moving the logic to the `wasmtime` crate.
Previously `wasmtime-jit` had a generic `Resolver` trait and would do
all the import type matching itself, but with the upcoming
module-linking implementation this is going to get much trickier.

The goal of this commit is to centralize all meaty "preparation" logic
for instantiation into one location, probably the `wasmtime` crate
itself. Instantiation will soon involve recursive instantiation and
management of alias definitions as well. Having everything in one
location, especially with access to `Store` so we can persist
instances for safety, will be quite convenient.

Additionally the `Resolver` trait isn't really necessary any more since
imports are, at the lowest level, provided as a list rather than a map
of some kind. More generic resolution functionality is provided via
`Linker` or user layers on top of `Instance::new` itself. This makes
matching up provided items to expected imports much easier as well.

Overall this is largely just moving code around, but most of the code
in the previous `resolve_imports` phase can be deleted since a lot of it
is handled by surrounding pieces of `wasmtime` as well.
2020-08-07 16:38:01 -05:00
Nick Fitzgerald
05bf9ea3f3 Rename "Stackmap" to "StackMap"
And "stackmap" to "stack_map".

This commit is purely mechanical.
2020-08-07 10:08:44 -07:00
Alex Crichton
3d2e0e55f2 Remove the local field of Module (#2091)
This was added long ago at this point to assist with caching, but
caching has moved to a different level such that this wonky second level
of a `Module` isn't necessary. This commit removes the `ModuleLocal`
type to simplify accessors and generally make it easier to work with.
2020-08-04 12:29:16 -05:00
Alex Crichton
65eaca35dd Refactor where results of compilation are stored (#2086)
* Refactor where results of compilation are stored

This commit refactors the internals of compilation in Wasmtime to change
where results of individual function compilation are stored. Previously
compilation resulted in many maps being returned, and compilation
results generally held all these maps together. This commit instead
switches this to have all metadata stored in a `CompiledFunction`
instead of having a separate map for each item that can be stored.

The motivation for this is primarily to help out with future
module-linking-related PRs. What exactly "module level" is depends on
how we interpret modules and how many modules are in play, so it's a bit
easier for operations in wasmtime to work at the function level where
possible. This means that we don't have to pass around multiple
different maps and a function index, but instead just one map or just
one entry representing a compiled function.

Additionally this change updates where the parallelism of compilation
happens, pushing it into `wasmtime-jit` instead of `wasmtime-environ`.
This is another goal where `wasmtime-jit` will have more knowledge about
module-level pieces with module linking in play. User-facing-wise this
should be the same in terms of parallel compilation, though.

The ultimate goal of this refactoring is to make it easier for the
results of compilation to actually be a set of wasm modules. This means
we won't be able to have a map-per-metadata where the primary key is the
function index, because there will be many modules within one "object
file".

* Don't clear out fields, just don't store them

Persist a smaller set of fields in `CompilationArtifacts` instead of
trying to clear fields out and dynamically not accessing them.
2020-08-03 12:20:51 -05:00
Alex Crichton
026fb8d388 Don't re-parse wasm for debuginfo (#2085)
* Don't re-parse wasm for debuginfo

This commit updates debuginfo parsing to happen during the main
translation of the original wasm module. This avoid re-parsing the wasm
module twice (at least the section-level headers). Additionally this
ties debuginfo directly to a `ModuleTranslation` which makes it easier
to process debuginfo for nested modules in the upcoming module linking
proposal.

The changes here are summarized by taking the `read_debuginfo` function
and merging it with the main module translation that happens which is
driven by cranelift. Some new hooks were added to the module environment
trait to support this, but most of it was integrating with existing hooks.

* Fix tests in debug crate
2020-08-03 09:59:20 -05:00
Yury Delendik
42127aac4e Refactor Cache logic to include debug information (#2065)
* move caching to the CompilationArtifacts

* mv cache_config from Compiler to CompiledModule

* hash isa flags

* no cache for wasm2obj

* mv caching to wasmtime crate

* account each Compiler field when hash
2020-07-23 12:10:13 -05:00
Yury Delendik
399ee0a54c Serialize and deserialize compilation artifacts. (#2020)
* Serialize and deserialize Module
* Use bincode to serialize
* Add wasm_module_serialize; docs
* Simple tests
2020-07-21 15:05:50 -05:00
Alex Crichton
63d5b91930 Wasmtime 0.19.0 and Cranelift 0.66.0 (#2027)
This commit updates Wasmtime's version to 0.19.0, Cranelift's version to
0.66.0, and updates the release notes as well.
2020-07-16 12:46:21 -05:00
Benjamin Bouvier
abf157bd69 machinst x64: Only use the feature flag to enable the x64 new backend;
Before this patch, running the x64 new backend would require both
compiling with --features experimental_x64 and running with
`use_new_backend`.

This patches changes this behavior so that the runtime flag is not
needed anymore: using the feature flag will enforce usage of the new
backend everywhere, making using and testing it much simpler:

    cargo run --features experimental_x64 ;; other CLI options/flags

This also gives a hint at what the meta language generation would look
like after switching to the new backend.

Compiling only with the x64 codegen flag gives a nice compile time speedup.
2020-07-15 13:11:28 +02:00
Alex Crichton
1000f21338 Update wasmparser to 0.59.0 (#2013)
This commit is intended to update wasmparser to 0.59.0. This primarily
includes bytecodealliance/wasm-tools#40 which is a large update to how
parsing and validation works. The impact on Wasmtime is pretty small at
this time, but over time I'd like to refactor the internals here to lean
more heavily on that upstream wasmparser refactoring.

For now, though, the intention is to get on the train of wasmparser's
latest `main` branch to ensure we get bug fixes and such.

As part of this update a few other crates and such were updated. This is
primarily to handle the new encoding of `ref.is_null` where the type is
not part of the instruction encoding any more.
2020-07-13 16:22:41 -05:00
Yury Delendik
091373f9b8 Removes duplicate code in src/obj.rs, crates/obj and crates/jit/object.rs (#1993)
Changes:

 -  Moves object creation code from crates/jit/object.rs to the creates/obj (as ObjectBuilder)
 -   Removes legacy crates/obj/function.rs
 -  Removes write_debugsections
2020-07-08 12:14:19 -05:00
Yury Delendik
bef1b87be0 Write ELF image and instantiate code_memory from it (#1931)
- Create the ELF image from Compilation
- Create CodeMemory from the ELF image
- Link using ELF image
- Remove creation of GDB JIT images from crates/debug
- Move make_trampoline from compiler.rs
2020-07-07 12:51:24 -05:00
Andrew Brown
4d57ae99e3 Upgrade wasmparser to 0.58.0 (#1942)
* Upgrade wasmparser to 0.58.0

* Enable more spec tests
2020-06-30 11:08:21 -05:00
Valentin
c10c79b7ae Correct version of region dependency (#1933) 2020-06-29 08:55:37 -05:00
Peter Huene
9ce67d8cad Merge pull request #1914 from peterhuene/fix-musl-unwind
Register individual FDEs for musl libc.
2020-06-25 13:02:29 -07:00
Peter Huene
4087fcee65 Register individual FDEs for musl libc.
When targeting musl, libunwind is used for the `__register_frame`
implementation.

Unlike when targeting libgcc which expects an entire frame table, the libunwind
implementation expects a single FDE.

This change ensures Wasmtime registers each individual FDE when targeting musl.

Fixes #1904.
2020-06-25 11:42:50 -07:00
Benjamin Bouvier
c9a3f05afd machinst x64: implement calls and int cmp/store/loads;
This makes it possible to run a simple recursive fibonacci function in
wasmtime.
2020-06-25 16:20:33 +02:00
Nick Fitzgerald
58bb5dd953 wasmtime: Add support for func.ref and table.grow with funcrefs
`funcref`s are implemented as `NonNull<VMCallerCheckedAnyfunc>`.

This should be more efficient than using a `VMExternRef` that points at a
`VMCallerCheckedAnyfunc` because it gets rid of an indirection, dynamic
allocation, and some reference counting.

Note that the null function reference is *NOT* a null pointer; it is a
`VMCallerCheckedAnyfunc` that has a null `func_ptr` member.

Part of #929
2020-06-24 10:08:13 -07:00
Nick Fitzgerald
c6f32f666d cranelift-wasm: Retain both the Wasm and Cranelift types of tables 2020-06-23 16:36:10 -07:00
Benjamin Bouvier
c2692ecb8a Wasmtime: allow using the experimental Cranelift x64 backend in cli;
This introduces two changes:

- first, a Cargo feature is added to make it possible to use the
Cranelift x64 backend directly from wasmtime's CLI.
- second, when passing a `cranelift-flags` parameter, and the given
parameter's name doesn't exist at the target-independent flag level, try
to set it as a target-dependent setting.

These two changes make it possible to try out the new x64 backend with:

    cargo run --features experimental_x64 -- run --cranelift-flags use_new_backend=true -- /path/to/a.wasm

Right now, this will fail because most opcodes required by the
trampolines are actually not implemented yet.
2020-06-17 17:18:46 +02:00
Nick Fitzgerald
7e167cae10 externref: Address review feedback 2020-06-15 15:39:26 -07:00
Nick Fitzgerald
f30ce1fe97 externref: implement stack map-based garbage collection
For host VM code, we use plain reference counting, where cloning increments
the reference count, and dropping decrements it. We can avoid many of the
on-stack increment/decrement operations that typically plague the
performance of reference counting via Rust's ownership and borrowing system.
Moving a `VMExternRef` avoids mutating its reference count, and borrowing it
either avoids the reference count increment or delays it until if/when the
`VMExternRef` is cloned.

When passing a `VMExternRef` into compiled Wasm code, we don't want to do
reference count mutations for every compiled `local.{get,set}`, nor for
every function call. Therefore, we use a variation of **deferred reference
counting**, where we only mutate reference counts when storing
`VMExternRef`s somewhere that outlives the activation: into a global or
table. Simultaneously, we over-approximate the set of `VMExternRef`s that
are inside Wasm function activations. Periodically, we walk the stack at GC
safe points, and use stack map information to precisely identify the set of
`VMExternRef`s inside Wasm activations. Then we take the difference between
this precise set and our over-approximation, and decrement the reference
count for each of the `VMExternRef`s that are in our over-approximation but
not in the precise set. Finally, the over-approximation is replaced with the
precise set.

The `VMExternRefActivationsTable` implements the over-approximized set of
`VMExternRef`s referenced by Wasm activations. Calling a Wasm function and
passing it a `VMExternRef` moves the `VMExternRef` into the table, and the
compiled Wasm function logically "borrows" the `VMExternRef` from the
table. Similarly, `global.get` and `table.get` operations clone the gotten
`VMExternRef` into the `VMExternRefActivationsTable` and then "borrow" the
reference out of the table.

When a `VMExternRef` is returned to host code from a Wasm function, the host
increments the reference count (because the reference is logically
"borrowed" from the `VMExternRefActivationsTable` and the reference count
from the table will be dropped at the next GC).

For more general information on deferred reference counting, see *An
Examination of Deferred Reference Counting and Cycle Detection* by Quinane:
https://openresearch-repository.anu.edu.au/bitstream/1885/42030/2/hon-thesis.pdf

cc #929

Fixes #1804
2020-06-15 09:39:37 -07:00
Dan Gohman
caa87048ab Wasmtime 0.18.0 and Cranelift 0.65.0. 2020-06-11 17:49:56 -07:00
Yury Delendik
4ebbcb82a9 Refactor CompiledModule to separate compile and linking stages (#1831)
* Refactor how relocs are stored and handled

* refactor CompiledModule::instantiate and link_module

* Refactor DWARF creation: split generation and serialization

* Separate DWARF data transform from instantiation

* rm LinkContext
2020-06-09 15:09:48 -05:00
whitequark
bc555468a7 cranelift: add i64.{ishl,ushr,ashr} libcalls.
These libcalls are useful for 32-bit platforms.

On x86_32 in particular, commit 4ec16fa0 added support for legalizing
64-bit shifts through SIMD operations. However, that legalization
requires SIMD to be enabled and SSE 4.1 to be supported, which is not
acceptable as a hard requirement.
2020-06-05 12:13:49 -07:00
Yury Delendik
6f37204f82 Upgrade gimli to 0.21 (#1819)
* Use gimli 0.21

* rm CFI w Expression

* Don't write .debug_frame twice
2020-06-04 14:34:05 -05:00
Chris Fallin
b8e31d7c8e Fix build warnings (errors on CI) due to mmap flag rename and deprecation. 2020-06-03 09:48:22 -07:00
Dan Gohman
a76639c6fb Wasmtime 0.17.0 and Cranelift 0.64.0. (#1805) 2020-06-02 18:51:59 -07:00
Yury Delendik
15c68f2cc1 Disconnects Store state fields from Compiler (#1761)
*  Moves CodeMemory, VMInterrupts and SignatureRegistry from Compiler
*  CompiledModule holds CodeMemory and GdbJitImageRegistration
*  Store keeps track of its JIT code
*  Makes "jit_int.rs" stuff Send+Sync
*  Adds the threads example.
2020-06-02 13:44:39 -05:00
Nick Fitzgerald
a8ee0554a9 wasmtime: Initial, partial support for externref
This is enough to get an `externref -> externref` identity function
passing.

However, `externref`s that are dropped by compiled Wasm code are (safely)
leaked. Follow up work will leverage cranelift's stack maps to resolve this
issue.
2020-06-01 15:09:51 -07:00
Nick Fitzgerald
137e182750 Update wasmparser to 0.57.0 2020-06-01 14:53:10 -07:00
whitequark
b2e8ed4dc9 cranelift: add i64.[us]{div,rem} libcalls.
These libcalls are useful for 32-bit platforms.
2020-05-22 11:41:56 +00:00
whitequark
26ee986c2f runtime: handle traps on Windows x32. (#1740) 2020-05-21 15:07:05 -05:00
Nick Fitzgerald
1a4f3fb2df Update deps and tests for anyref --> externref
* Update to using `wasmparser` 0.55.0
* Update wasmprinter to 0.2.5
* Update `wat` to 1.0.18, and `wast` to 17.0.0
2020-05-14 12:47:37 -07:00
whitequark
a1dbeee062 Implement X86CallPCRel4 relocations in the JIT linker.
All calls inside a module are relocated with these.
2020-05-09 03:27:06 -07:00
Alex Crichton
a7d90af19d Update wasmparser and wast dependencies (#1663)
Brings in updates to SIMD spec ops renumbering.
2020-05-05 16:13:14 -05:00
Dan Gohman
864cf98c8d Update release notes, wasmtime 0.16, cranelift 0.63. 2020-04-29 17:30:25 -07:00
Alex Crichton
d719ec7e1c Don't try to handle non-wasmtime segfaults (#1577)
This commit fixes an issue in Wasmtime where Wasmtime would accidentally
"handle" non-wasm segfaults while executing host imports of wasm
modules. If a host import segfaulted then Wasmtime would recognize that
wasm code is on the stack, so it'd longjmp out of the wasm code. This
papers over real bugs though in host code and erroneously classified
segfaults as wasm traps.

The fix here was to add a check to our wasm signal handler for if the
faulting address falls in JIT code itself. Actually threading through
all the right information for that check to happen is a bit tricky,
though, so this involved some refactoring:

* A closure parameter to `catch_traps` was added. This closure is
  responsible for classifying addresses as whether or not they fall in
  JIT code. Anything returning `false` means that the trap won't get
  handled and we'll forward to the next signal handler.

* To avoid passing tons of context all over the place, the start
  function is now no longer automatically invoked by `InstanceHandle`.
  This avoids the need for passing all sorts of trap-handling contextual
  information like the maximum stack size and "is this a jit address"
  closure. Instead creators of `InstanceHandle` (like wasmtime) are now
  responsible for invoking the start function.

* To avoid excessive use of `transmute` with lifetimes since the
  traphandler state now has a lifetime the per-instance custom signal
  handler is now replaced with a per-store custom signal handler. I'm
  not entirely certain the purpose of the custom signal handler, though,
  so I'd look for feedback on this part.

A new test has been added which ensures that if a host function
segfaults we don't accidentally try to handle it, and instead we
correctly report the segfault.
2020-04-29 14:24:54 -05:00