* Manually rename BasicBlock to BlockPredecessor
BasicBlock is a pair of (Ebb, Inst) that is used to represent the
basic block subcomponent of an Ebb that is a predecessor to an Ebb.
Eventually we will be able to remove this struct, but for now it
makes sense to give it a non-conflicting name so that we can start
to transition Ebb to represent a basic block.
I have not updated any comments that refer to BasicBlock, as
eventually we will remove BlockPredecessor and replace with Block,
which is a basic block, so the comments will become correct.
* Manually rename SSABuilder block types to avoid conflict
SSABuilder has its own Block and BlockData types. These along with
associated identifier will cause conflicts in a later commit, so
they are renamed to be more verbose here.
* Automatically rename 'Ebb' to 'Block' in *.rs
* Automatically rename 'EBB' to 'block' in *.rs
* Automatically rename 'ebb' to 'block' in *.rs
* Automatically rename 'extended basic block' to 'basic block' in *.rs
* Automatically rename 'an basic block' to 'a basic block' in *.rs
* Manually update comment for `Block`
`Block`'s wikipedia article required an update.
* Automatically rename 'an `Block`' to 'a `Block`' in *.rs
* Automatically rename 'extended_basic_block' to 'basic_block' in *.rs
* Automatically rename 'ebb' to 'block' in *.clif
* Manually rename clif constant that contains 'ebb' as substring to avoid conflict
* Automatically rename filecheck uses of 'EBB' to 'BB'
'regex: EBB' -> 'regex: BB'
'$EBB' -> '$BB'
* Automatically rename 'EBB' 'Ebb' to 'block' in *.clif
* Automatically rename 'an block' to 'a block' in *.clif
* Fix broken testcase when function name length increases
Test function names are limited to 16 characters. This causes
the new longer name to be truncated and fail a filecheck test. An
outdated comment was also fixed.
And replace it by constructors in OperandKind. There's a single optional
parameter function `set_doc` that remains, and didn't justify the whole
OperandKindBuilder concept to exist.
This does a lot at once, since there was no clear way to split the three
commits:
- Instruction need to be passed an explicit InstructionFormat,
- InstructionFormat deduplication is checked once all entities have been
defined;
This avoids a lot of dereferences, and InstructionFormat are immutable
once they're created. It removes a lot of code that was keeping the
FormatRegistry around, just in case we needed the format. This is more
in line with the way we create Instructions, and make it easy to
reference InstructionFormats in general.
Previously, ConstantData was a type alias for `Vec<u8>` which prevented it from having an implementation; this meant that `V128Imm` and `&[u8; 16]` were used in places that otherwise could have accepted types of different byte lengths.
This avoids doing multiple unpacking of the InstructionData for a single
legalization, improving readability and reducing size of the generated
code. For instance, icmp had to unpack the format once per IntCC
condition code.
This change should make the code more clear (and less code) when adding encodings for instructions with specific immediates; e.g., a constant with a 0 immediate could be encoded as an XOR with something like `const.bind(...)` without explicitly creating the necessary predicates. It has several parts:
* Introduce Bindable trait to instructions
* Convert all instruction bindings to use Bindable::bind()
* Add ability to bind immediates to BoundInstruction
This is an attempt to reduce some of the issues in #955.
Instead of using MOVUPS to expensively load bits from memory, this change uses a predicate to optimize vconst without a memory access:
- when the 128-bit immediate is all zeroes in all bits, use PXOR to zero out an XMM register
- when the 128-bit immediate is all ones in all bits, use PCMPEQB to set an XMM register to all ones
This leaves the constant data in the constant pool, which may increase code size (TODO)
-Add resumable_trap, safepoint, isnull, and null instructions
-Add Stackmap struct and StackmapSink trait
Co-authored-by: Mir Ahmed <mirahmed753@gmail.com>
Co-authored-by: Dan Gohman <sunfish@mozilla.com>
This follows the rest of the code base data structures, where we have a
mutable data structure builder; once the data structure is constructed,
it's immutable.
This also makes the definition of instructions easier, and it paves the
way for defining immediate variants.