This commit updates the various tooling used by wasmtime which has new
updates to the module linking proposal. This is done primarily to sync
with WebAssembly/module-linking#26. The main change implemented here is
that wasmtime now supports creating instances from a set of values, nott
just from instantiating a module. Additionally subtyping handling of
modules with respect to imports is now properly handled by desugaring
two-level imports to imports of instances.
A number of small refactorings are included here as well, but most of
them are in accordance with the changes to `wasmparser` and the updated
binary format for module linking.
* Implement imported/exported modules/instances
This commit implements the final piece of the module linking proposal
which is to flesh out the support for importing/exporting instances and
modules. This ended up having a few changes:
* Two more `PrimaryMap` instances are now stored in an `Instance`. The value
for instances is `InstanceHandle` (pretty easy) and for modules it's
`Box<dyn Any>` (less easy).
* The custom host state for `InstanceHandle` for `wasmtime` is now
`Arc<TypeTables` to be able to fully reconstruct an instance's types
just from its instance.
* Type matching for imports now has been updated to take
instances/modules into account.
One of the main downsides of this implementation is that type matching
of imports is duplicated between wasmparser and wasmtime, leading to
posssible bugs especially in the subtelties of module linking. I'm not
sure how best to unify these two pieces of validation, however, and it
may be more trouble than it's worth.
cc #2094
* Update wat/wast/wasmparser
* Review comments
* Fix a bug in publish script to vendor the right witx
Currently there's two witx binaries in our repository given the two wasi
spec submodules, so this updates the publication script to vendor the
right one.
This commit removes all import resolution handling from the
`wasmtime-jit` crate, instead moving the logic to the `wasmtime` crate.
Previously `wasmtime-jit` had a generic `Resolver` trait and would do
all the import type matching itself, but with the upcoming
module-linking implementation this is going to get much trickier.
The goal of this commit is to centralize all meaty "preparation" logic
for instantiation into one location, probably the `wasmtime` crate
itself. Instantiation will soon involve recursive instantiation and
management of alias definitions as well. Having everything in one
location, especially with access to `Store` so we can persist
instances for safety, will be quite convenient.
Additionally the `Resolver` trait isn't really necessary any more since
imports are, at the lowest level, provided as a list rather than a map
of some kind. More generic resolution functionality is provided via
`Linker` or user layers on top of `Instance::new` itself. This makes
matching up provided items to expected imports much easier as well.
Overall this is largely just moving code around, but most of the code
in the previous `resolve_imports` phase can be deleted since a lot of it
is handled by surrounding pieces of `wasmtime` as well.
* Revamp memory management of `InstanceHandle`
This commit fixes a known but in Wasmtime where an instance could still
be used after it was freed. Unfortunately the fix here is a bit of a
hammer, but it's the best that we can do for now. The changes made in
this commit are:
* A `Store` now stores all `InstanceHandle` objects it ever creates.
This keeps all instances alive unconditionally (along with all host
functions and such) until the `Store` is itself dropped. Note that a
`Store` is reference counted so basically everything has to be dropped
to drop anything, there's no longer any partial deallocation of instances.
* The `InstanceHandle` type's own reference counting has been removed.
This is largely redundant with what's already happening in `Store`, so
there's no need to manage two reference counts.
* Each `InstanceHandle` no longer tracks its dependencies in terms of
instance handles. This set was actually inaccurate due to dynamic
updates to tables and such, so we needed to revamp it anyway.
* Initialization of an `InstanceHandle` is now deferred until after
`InstanceHandle::new`. This allows storing the `InstanceHandle` before
side-effectful initialization, such as copying element segments or
running the start function, to ensure that regardless of the result of
instantiation the underlying `InstanceHandle` is still available to
persist in storage.
Overall this should fix a known possible way to safely segfault Wasmtime
today (yay!) and it should also fix some flaikness I've seen on CI.
Turns out one of the spec tests
(bulk-memory-operations/partial-init-table-segment.wast) exercises this
functionality and we were hitting sporating use-after-free, but only on
Windows.
* Shuffle some APIs around
* Comment weak cycle
* Migrate back to `std::` stylistically
This commit moves away from idioms such as `alloc::` and `core::` as
imports of standard data structures and types. Instead it migrates all
crates to uniformly use `std::` for importing standard data structures
and types. This also removes the `std` and `core` features from all
crates to and removes any conditional checking for `feature = "std"`
All of this support was previously added in #407 in an effort to make
wasmtime/cranelift "`no_std` compatible". Unfortunately though this
change comes at a cost:
* The usage of `alloc` and `core` isn't idiomatic. Especially trying to
dual between types like `HashMap` from `std` as well as from
`hashbrown` causes imports to be surprising in some cases.
* Unfortunately there was no CI check that crates were `no_std`, so none
of them actually were. Many crates still imported from `std` or
depended on crates that used `std`.
It's important to note, however, that **this does not mean that wasmtime
will not run in embedded environments**. The style of the code today and
idioms aren't ready in Rust to support this degree of multiplexing and
makes it somewhat difficult to keep up with the style of `wasmtime`.
Instead it's intended that embedded runtime support will be added as
necessary. Currently only `std` is necessary to build `wasmtime`, and
platforms that natively need to execute `wasmtime` will need to use a
Rust target that supports `std`. Note though that not all of `std` needs
to be supported, but instead much of it could be configured off to
return errors, and `wasmtime` would be configured to gracefully handle
errors.
The goal of this PR is to move `wasmtime` back to idiomatic usage of
features/`std`/imports/etc and help development in the short-term.
Long-term when platform concerns arise (if any) they can be addressed by
moving back to `no_std` crates (but fixing the issues mentioned above)
or ensuring that the target in Rust has `std` available.
* Start filling out platform support doc