This PR introduces a new way of performing cooperative timeslicing that
is intended to replace the "fuel" mechanism. The tradeoff is that this
mechanism interrupts with less precision: not at deterministic points
where fuel runs out, but rather when the Engine enters a new epoch. The
generated code instrumentation is substantially faster, however, because
it does not need to do as much work as when tracking fuel; it only loads
the global "epoch counter" and does a compare-and-branch at backedges
and function prologues.
This change has been measured as ~twice as fast as fuel-based
timeslicing for some workloads, especially control-flow-intensive
workloads such as the SpiderMonkey JS interpreter on Wasm/WASI.
The intended interface is that the embedder of the `Engine` performs an
`engine.increment_epoch()` call periodically, e.g. once per millisecond.
An async invocation of a Wasm guest on a `Store` can specify a number of
epoch-ticks that are allowed before an async yield back to the
executor's event loop. (The initial amount and automatic "refills" are
configured on the `Store`, just as for fuel.) This call does only
signal-safe work (it increments an `AtomicU64`) so could be invoked from
a periodic signal, or from a thread that wakes up once per period.
This commit adds a few more CLI flags for random fiddly bits in the
`Config` structure to make it a bit easier to play around on the command
line and see the effect of various flags on compiled code.
* Enable the SIMD proposal by default
This commit updates Wasmtime to enable the SIMD proposal for WebAssembly
by default. Support has been implemented for quite some time and
recently fuzzing has been running for multiple weeks without incident,
so it seems like it might be time to go ahead and enable this!
* Refactor CLI feature specification
Don't store a `bool` but rather an `Option<bool>` so we can inherit the
defaults from Wasmtime rather than having to keep the defaults in-sync.
* Add a configuration option to force "static" memories
In poking around at some things earlier today I realized that one
configuration option for memories we haven't exposed from embeddings
like the CLI is to forcibly limit the size of memory growth and force
using a static memory style. This means that the CLI, for example, can't
limit memory growth by default and memories are only limited in size by
what the OS can give and the wasm's own memory type. This configuration
option means that the CLI can artificially limit the size of wasm linear
memories.
Additionally another motivation for this is for testing out various
codegen ramifications of static/dynamic memories. This is the only way
to force a static memory, by default, for wasm64 memories with no
maximum size listed for example.
* Review feedback
This commit removes the Lightbeam backend from Wasmtime as per [RFC 14].
This backend hasn't received maintenance in quite some time, and as [RFC
14] indicates this doesn't meet the threshold for keeping the code
in-tree, so this commit removes it.
A fast "baseline" compiler may still be added in the future. The
addition of such a backend should be in line with [RFC 14], though, with
the principles we now have for stable releases of Wasmtime. I'll close
out Lightbeam-related issues once this is merged.
[RFC 14]: https://github.com/bytecodealliance/rfcs/pull/14
* Optimize `Func::call` and its C API
This commit is an alternative to #3298 which achieves effectively the
same goal of optimizing the `Func::call` API as well as its C API
sibling of `wasmtime_func_call`. The strategy taken here is different
than #3298 though where a new API isn't created, rather a small tweak to
an existing API is done. Specifically this commit handles the major
sources of slowness with `Func::call` with:
* Looking up the type of a function, to typecheck the arguments with and
use to guide how the results should be loaded, no longer hits the
rwlock in the `Engine` but instead each `Func` contains its own
`FuncType`. This can be an unnecessary allocation for funcs not used
with `Func::call`, so this is a downside of this implementation
relative to #3298. A mitigating factor, though, is that instance
exports are loaded lazily into the `Store` and in theory not too many
funcs are active in the store as `Func` objects.
* Temporary storage is amortized with a long-lived `Vec` in the `Store`
rather than allocating a new vector on each call. This is basically
the same strategy as #3294 only applied to different types in
different places. Specifically `wasmtime::Store` now retains a
`Vec<u128>` for `Func::call`, and the C API retains a `Vec<Val>` for
calling `Func::call`.
* Finally, an API breaking change is made to `Func::call` and its type
signature (as well as `Func::call_async`). Instead of returning
`Box<[Val]>` as it did before this function now takes a
`results: &mut [Val]` parameter. This allows the caller to manage the
allocation and we can amortize-remove it in `wasmtime_func_call` by
using space after the parameters in the `Vec<Val>` we're passing in.
This change is naturally a breaking change and we'll want to consider
it carefully, but mitigating factors are that most embeddings are
likely using `TypedFunc::call` instead and this signature taking a
mutable slice better aligns with `Func::new` which receives a mutable
slice for the results.
Overall this change, in the benchmark of "call a nop function from the C
API" is not quite as good as #3298. It's still a bit slower, on the
order of 15ns, because there's lots of capacity checks around vectors
and the type checks are slightly less optimized than before. Overall
though this is still significantly better than today because allocations
and the rwlock to acquire the type information are both avoided. I
personally feel that this change is the best to do because it has less
of an API impact than #3298.
* Rebase issues
* Restore running precompiled modules with the CLI
This was accidentally broken when `Module::deserialize` was split out of
`Module::new` long ago, so this adds the detection in the CLI to call
the appropriate method to load the module. This feature is gated behind
an `--allow-precompiled` flag to enable, by default, passing arbitrary
user input to the `wasmtime` command.
Closes#3338
* Fix test on Windows
* Remove the `wasmtime wasm2obj` command
This commit removes the `wasm2obj` subcommand of the `wasmtime` CLI.
This subcommand has a very long history and dates back quite far. While
it's existed, however, it's never been documented in terms of the output
it's produced. AFAIK it's only ever been used for debugging to see the
machine code output of Wasmtime on some modules. With recent changes to
the module serialization output the output of `wasmtime compile`, the
`*.cwasm` file, is now a native ELF file which can be fed to standard
tools like `objdump`. Consequently I dont think there's any remaining
need to keep `wasm2obj` around itself, so this commit removes the
subcommand.
* More code to delete
* Try to fix debuginfo tests
* Move wasm data/debuginfo into the ELF compilation image
This commit moves existing allocations of `Box<[u8]>` stored separately
from compilation's final ELF image into the ELF image itself. The goal
of this commit is to reduce the amount of data which `bincode` will need
to process in the future. DWARF debugging information and wasm data
segments can be quite large, and they're relatively rarely read, so
there's typically no need to copy them around. Instead by moving them
into the ELF image this opens up the opportunity in the future to
eliminate copies and use data directly as-found in the image itself.
For information accessed possibly-multiple times, such as the wasm data
ranges, the indexes of the data within the ELF image are computed when
a `CompiledModule` is created. These indexes are then used to directly
index into the image without having to root around in the ELF file each
time they're accessed.
One other change located here is that the symbolication context
previously cloned the debug information into it to adhere to the
`'static` lifetime safely, but this isn't actually ever used in
`wasmtime` right now so the unsafety around this has been removed and
instead borrowed data is returned (no more clones, yay!).
* Fix lightbeam
The `strategy` was chosen after the `target` which meant that the target
choice was blown away because the `strategy` method overwrites the
currently configured compiler.
* Remove unnecessary into_iter/map
Forgotten from a previous refactoring, this variable was already of the
right type!
* Move `wasmtime_jit::Compiler` into `wasmtime`
This `Compiler` struct is mostly a historical artifact at this point and
wasn't necessarily pulling much weight any more. This organization also
doesn't lend itself super well to compiling out `cranelift` when the
`Compiler` here is used for both parallel iteration configuration
settings as well as compilation.
The movement into `wasmtime` is relatively small, with
`Module::build_artifacts` being the main function added here which is a
merging of the previous functions removed from the `wasmtime-jit` crate.
* Add a `cranelift` compile-time feature to `wasmtime`
This commit concludes the saga of refactoring Wasmtime and making
Cranelift an optional dependency by adding a new Cargo feature to the
`wasmtime` crate called `cranelift`, which is enabled by default.
This feature is implemented by having a new cfg for `wasmtime` itself,
`cfg(compiler)`, which is used wherever compilation is necessary. This
bubbles up to disable APIs such as `Module::new`, `Func::new`,
`Engine::precompile_module`, and a number of `Config` methods affecting
compiler configuration. Checks are added to CI that when built in this
mode Wasmtime continues to successfully build. It's hoped that although
this is effectively "sprinkle `#[cfg]` until things compile" this won't
be too too bad to maintain over time since it's also an use case we're
interested in supporting.
With `cranelift` disabled the only way to create a `Module` is with the
`Module::deserialize` method, which requires some form of precompiled
artifact.
Two consequences of this change are:
* `Module::serialize` is also disabled in this mode. The reason for this
is that serialized modules contain ISA/shared flags encoded in them
which were used to produce the compiled code. There's no storage for
this if compilation is disabled. This could probably be re-enabled in
the future if necessary, but it may not end up being all that necessary.
* Deserialized modules are not checked to ensure that their ISA/shared
flags are compatible with the host CPU. This is actually already the
case, though, with normal modules. We'll likely want to fix this in
the future using a shared implementation for both these locations.
Documentation should be updated to indicate that `cranelift` can be
disabled, although it's not really the most prominent documentation
because this is expected to be a somewhat niche use case (albeit
important, just not too common).
* Always enable cranelift for the C API
* Fix doc example builds
* Fix check tests on GitHub Actions
* Reimplement how unwind information is stored
This commit is a major refactoring of how unwind information is stored
after compilation of a function has finished. Previously we would store
the raw `UnwindInfo` as a result of compilation and this would get
serialized/deserialized alongside the rest of the ELF object that
compilation creates. Whenever functions were registered with
`CodeMemory` this would also result in registering unwinding information
dynamically at runtime, which in the case of Unix, for example, would
dynamically created FDE/CIE entries on-the-fly.
Eventually I'd like to support compiling Wasmtime without Cranelift, but
this means that `UnwindInfo` wouldn't be easily available to decode into
and create unwinding information from. To solve this I've changed the
ELF object created to have the unwinding information encoded into it
ahead-of-time so loading code into memory no longer needs to create
unwinding tables. This change has two different implementations for
Windows/Unix:
* On Windows the implementation was much easier. The unwinding
information on Windows is already stored after the function itself in
the text section. This was actually slightly duplicated in object
building and in code memory allocation. Now the object building
continues to do the same, recording unwinding information after
functions, and code memory no longer manually tracks this.
Additionally Wasmtime will emit a special custom section in the object
file with unwinding information which is the list of
`RUNTIME_FUNCTION` structures that `RtlAddFunctionTable` expects. This
means that the object file has all the information precompiled into it
and registration at runtime is simply passing a few pointers around to
the runtime.
* Unix was a little bit more difficult than Windows. Today a `.eh_frame`
section is created on-the-fly with offsets in FDEs specified as the
absolute address that functions are loaded at. This absolute
address hindered the ability to precompile the FDE into the object
file itself. I've switched how addresses are encoded, though, to using
`DW_EH_PE_pcrel` which means that FDE addresses are now specified
relative to the FDE itself. This means that we can maintain a fixed
offset between the `.eh_frame` loaded in memory and the beginning of
code memory. When doing so this enables precompiling the `.eh_frame`
section into the object file and at runtime when loading an object no
further construction of unwinding information is needed.
The overall result of this commit is that unwinding information is no
longer stored in its cranelift-data-structure form on disk. This means
that this unwinding information format is only present during
compilation, which will make it that much easier to compile out
cranelift in the future.
This commit also significantly refactors `CodeMemory` since the way
unwinding information is handled is not much different from before.
Previously `CodeMemory` was suitable for incrementally adding more and
more functions to it, but nowadays a `CodeMemory` either lives per
module (in which case all functions are known up front) or it's created
once-per-`Func::new` with two trampolines. In both cases we know all
functions up front so the functionality of incrementally adding more and
more segments is no longer needed. This commit removes the ability to
add a function-at-a-time in `CodeMemory` and instead it can now only
load objects in their entirety. A small helper function is added to
build a small object file for trampolines in `Func::new` to handle
allocation there.
Finally, this commit also folds the `wasmtime-obj` crate directly into
the `wasmtime-cranelift` crate and its builder structure to be more
amenable to this strategy of managing unwinding tables.
It is not intentional to have any real functional change as a result of
this commit. This might accelerate loading a module from cache slightly
since less work is needed to manage the unwinding information, but
that's just a side benefit from the main goal of this commit which is to
remove the dependence on cranelift unwinding information being available
at runtime.
* Remove isa reexport from wasmtime-environ
* Trim down reexports of `cranelift-codegen`
Remove everything non-essential so that only the bits which will need to
be refactored out of cranelift remain.
* Fix debug tests
* Review comments
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.
This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:
* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
server as an abstraction used to create compilers and configure them
in a uniform fashion. The `wasmtime::Config` type now uses this
instead of cranelift-specific settings. The `wasmtime-jit` crate
exports the ability to create a compiler builder from a
`CompilationStrategy`, which only works for Cranelift right now. In a
cranelift-less build of Wasmtime this is expected to return a trait
object that fails all requests to compile.
* The `Compiler` trait in the `wasmtime_environ` crate has been souped
up with a number of methods that Wasmtime and other crates needed.
* The `wasmtime-debug` crate is now moved entirely behind the
`wasmtime-cranelift` crate.
* The `wasmtime-cranelift` crate is now only depended on by the
`wasmtime-jit` crate.
* Wasm types in `cranelift-wasm` no longer contain their IR type,
instead they only contain the `WasmType`. This is required to get
everything to align correctly but will also be required in a future
refactoring where the types used by `cranelift-wasm` will be extracted
to a separate crate.
* I moved around a fair bit of code in `wasmtime-cranelift`.
* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
`wasmtime-jit`.
* Move all trampoline compilation to `wasmtime-cranelift`
This commit moves compilation of all the trampolines used in wasmtime
behind the `Compiler` trait object to live in `wasmtime-cranelift`. The
long-term goal of this is to enable depending on cranelift *only* from
the `wasmtime-cranelift` crate, so by moving these dependencies we
should make that a little more flexible.
* Fix windows build
* Port wasi-common to io-lifetimes.
This ports wasi-common from unsafe-io to io-lifetimes.
Ambient authority is now indicated via calls to `ambient_authority()`
from the ambient-authority crate, rather than using `unsafe` blocks.
The `GetSetFdFlags::set_fd_flags` function is now split into two phases,
to simplify lifetimes in implementations which need to close and re-open
the underlying file.
* Use posish for errno values instead of libc.
This eliminates one of the few remaining direct libc dependencies.
* Port to posish::io::poll.
Use posish::io::poll instead of calling libc directly. This factors out
more code from Wasmtime, and eliminates the need to manipulate raw file
descriptors directly.
And, this eliminates the last remaining direct dependency on libc in
wasi-common.
* Port wasi-c-api to io-lifetimes.
* Update to posish 0.16.0.
* Embeded NULs in filenames now get `EINVAL` instead of `EILSEQ`.
* Accept either `EILSEQ` or `EINVAL` for embedded NULs.
* Bump the nightly toolchain to 2021-07-12.
This fixes build errors on the semver crate, which as of this writing
builds with latest nightly and stable but not 2021-04-11, the old pinned
version.
* Have cap-std-sync re-export ambient_authority so that users get the same version.
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
* wasmtime-wasi: re-exporting this WasiCtxBuilder was shadowing the right one
wasi-common's WasiCtxBuilder is really only useful wasi_cap_std_sync and
wasi_tokio to implement their own Builder on top of.
This re-export of wasi-common's is 1. not useful and 2. shadow's the
re-export of the right one in sync::*.
* wasi-common: eliminate WasiCtxBuilder, make the builder methods on WasiCtx instead
* delete wasi-common::WasiCtxBuilder altogether
just put those methods directly on &mut WasiCtx.
As a bonus, the sync and tokio WasiCtxBuilder::build functions
are no longer fallible!
* bench fixes
* more test fixes
This commit implements the `--allow-unknown-exports` option to the CLI run
command that will ignore unknown exports in a command module rather than
return an error.
Fixes#2587.
* wasi-nn: turn it on by default
This change makes the wasi-nn Cargo feature a default feature. Previously, a wasi-nn user would have to build a separate Wasmtime binary (e.g. `cargo build --features wasi-nn ...`) to use wasi-nn and the resulting binary would require OpenVINO shared libraries to be present in the environment in order to run (otherwise it would fail immediately with linking errors). With recent changes to the `openvino` crate, the wasi-nn implementation can defer the loading of the OpenVINO shared libraries until runtime (i.e., when the user Wasm program calls `wasi_ephemeral_nn::load`) and display a user-level error if anything goes wrong (e.g., the OpenVINO libraries are not present on the system). This runtime-linking addition allows the wasi-nn feature to be turned on by default and shipped with upcoming releases of Wasmtime. This change should be transparent for users who do not use wasi-nn: the `openvino` crate is small and the newly-available wasi-nn imports only affect programs in which they are used.
For those interested in reviewing the runtime linking approach added to the `openvino` crate, see https://github.com/intel/openvino-rs/pull/19.
* wasi-nn spec path: don't use canonicalize
* Allow dependencies using the ISC license
The ISC license should be [just as permissive](https://choosealicense.com/licenses/isc) as MIT, e.g., with no additional limitations.
* Add a `--wasi-modules` flag
This flag controls which WASI modules are made available to the Wasm program. This initial commit enables `wasi-common` by default (equivalent to `--wasi-modules=all`) and allows `wasi-nn` and `wasi-crypto` to be added in either individually (e.g., `--wasi-modules=wasi-nn`) or as a group (e.g., `--wasi-modules=all-experimental`).
* wasi-crypto: fix unused dependency
Co-authored-by: Pat Hickey <pat@moreproductive.org>
* Bring back `Module::deserialize`
I thought I was being clever suggesting that `Module::deserialize` was
removed from #2791 by funneling all module constructors into
`Module::new`. As our studious fuzzers have found, though, this means
that `Module::new` is not safe currently to pass arbitrary user-defined
input into. Now one might pretty reasonable expect to be able to do
that, however, being a WebAssembly engine and all. This PR as a result
separates the `deserialize` part of `Module::new` back into
`Module::deserialize`.
This means that binary blobs created with `Module::serialize` and
`Engine::precompile_module` will need to be passed to
`Module::deserialize` to "rehydrate" them back into a `Module`. This
restores the property that it should be safe to pass arbitrary input to
`Module::new` since it's always expected to be a wasm module. This also
means that fuzzing will no longer attempt to fuzz `Module::deserialize`
which isn't something we want to do anyway.
* Fix an example
* Mark `Module::deserialize` as `unsafe`
This commit changes how both the shared flags and ISA flags are stored in the
serialized module to detect incompatibilities when a serialized module is
instantiated.
It improves the error reporting when a compiled module has mismatched shared
flags.
* Expand doc comment on `Engine::precompile_module`.
* Add FIXME comment regarding a future ISA flag compatibility check before
doing a JIT from `Module::from_binary`.
* Remove no-longer-needed CLI groups from the `compile` command.
* Move `Module::compile` to `Engine::precompile_module`.
* Remove `Module::deserialize` method.
* Make `Module::serialize` the same format as `Engine::precompile_module`.
* Make `Engine::precompile_module` return a `Vec<u8>`.
* Move the remaining serialization-related code to `serialization.rs`.
This commit adds the `wasmtime settings` command to print out available
Cranelift settings for a target (defaults to the host).
The compile command has been updated to remove the Cranelift ISA options in
favor of encouraging users to use `wasmtime settings` to discover what settings
are available. This will reduce the maintenance cost for syncing the compile
command with Cranelift ISA flags.
This commit hides the existing WebAssembly feature CLI options (e.g.
`--enable-simd`) and adds a `--wasm-features` flag that enables multiple
(or all) WebAssembly features.
Features can be disabled by prefixing the value with `-`, e.g.
`--wasm-features=-simd`.
* Remove `Config::for_target` in favor of setter `Config::target`.
* Remove explicit setting of Cranelift flags in `Config::new` in favor of
calling the `Config` methods that do the same thing.
* Serialize the package version independently of the data when serializing a
module.
* Use struct deconstructing in module serialization to ensure tunables and
features aren't missed.
* Move common log initialization in the CLI into `CommonOptions`.
This commit adds a `compile` command to the Wasmtime CLI.
The command can be used to Ahead-Of-Time (AOT) compile WebAssembly modules.
With the `all-arch` feature enabled, AOT compilation can be performed for
non-native architectures (i.e. cross-compilation).
The `Module::compile` method has been added to perform AOT compilation.
A few of the CLI flags relating to "on by default" Wasm features have been
changed to be "--disable-XYZ" flags.
A simple example of using the `wasmtime compile` command:
```text
$ wasmtime compile input.wasm
$ wasmtime input.cwasm
```
* Implement defining host functions at the Config level.
This commit introduces defining host functions at the `Config` rather than with
`Func` tied to a `Store`.
The intention here is to enable a host to define all of the functions once
with a `Config` and then use a `Linker` (or directly with
`Store::get_host_func`) to use the functions when instantiating a module.
This should help improve the performance of use cases where a `Store` is
short-lived and redefining the functions at every module instantiation is a
noticeable performance hit.
This commit adds `add_to_config` to the code generation for Wasmtime's `Wasi`
type.
The new method adds the WASI functions to the given config as host functions.
This commit adds context functions to `Store`: `get` to get a context of a
particular type and `set` to set the context on the store.
For safety, `set` cannot replace an existing context value of the same type.
`Wasi::set_context` was added to set the WASI context for a `Store` when using
`Wasi::add_to_config`.
* Add `Config::define_host_func_async`.
* Make config "async" rather than store.
This commit moves the concept of "async-ness" to `Config` rather than `Store`.
Note: this is a breaking API change for anyone that's already adopted the new
async support in Wasmtime.
Now `Config::new_async` is used to create an "async" config and any `Store`
associated with that config is inherently "async".
This is needed for async shared host functions to have some sanity check during their
execution (async host functions, like "async" `Func`, need to be called with
the "async" variants).
* Update async function tests to smoke async shared host functions.
This commit updates the async function tests to also smoke the shared host
functions, plus `Func::wrap0_async`.
This also changes the "wrap async" method names on `Config` to
`wrap$N_host_func_async` to slightly better match what is on `Func`.
* Move the instance allocator into `Engine`.
This commit moves the instantiated instance allocator from `Config` into
`Engine`.
This makes certain settings in `Config` no longer order-dependent, which is how
`Config` should ideally be.
This also removes the confusing concept of the "default" instance allocator,
instead opting to construct the on-demand instance allocator when needed.
This does alter the semantics of the instance allocator as now each `Engine`
gets its own instance allocator rather than sharing a single one between all
engines created from a configuration.
* Make `Engine::new` return `Result`.
This is a breaking API change for anyone using `Engine::new`.
As creating the pooling instance allocator may fail (likely cause is not enough
memory for the provided limits), instead of panicking when creating an
`Engine`, `Engine::new` now returns a `Result`.
* Remove `Config::new_async`.
This commit removes `Config::new_async` in favor of treating "async support" as
any other setting on `Config`.
The setting is `Config::async_support`.
* Remove order dependency when defining async host functions in `Config`.
This commit removes the order dependency where async support must be enabled on
the `Config` prior to defining async host functions.
The check is now delayed to when an `Engine` is created from the config.
* Update WASI example to use shared `Wasi::add_to_config`.
This commit updates the WASI example to use `Wasi::add_to_config`.
As only a single store and instance are used in the example, it has no semantic
difference from the previous example, but the intention is to steer users
towards defining WASI on the config and only using `Wasi::add_to_linker` when
more explicit scoping of the WASI context is required.
the Rc<RefCell<ctx>> wrapping inside the wasmtime-generated bindings
was eliminated, and instead the caller of ::new(linker, ctx) is
required to wrap the ctx in Rc<RefCell<>>.
The Rc wrapping inside WasiCryptoCtx can be eliminated due to this
change.
* Add support for the experimental wasi-crypto APIs
The sole purpose of the implementation is to allow bindings and
application developers to test the proposed APIs.
Rust and AssemblyScript bindings are also available as examples.
Like `wasi-nn`, it is currently disabled by default, and requires
the `wasi-crypto` feature flag to be compiled in.
* Rename the wasi-crypto/spec submodule
* Add a path dependency into the submodule for wasi-crypto
* Tell the publish script to vendor wasi-crypto
This commit updates the various tooling used by wasmtime which has new
updates to the module linking proposal. This is done primarily to sync
with WebAssembly/module-linking#26. The main change implemented here is
that wasmtime now supports creating instances from a set of values, nott
just from instantiating a module. Additionally subtyping handling of
modules with respect to imports is now properly handled by desugaring
two-level imports to imports of instances.
A number of small refactorings are included here as well, but most of
them are in accordance with the changes to `wasmparser` and the updated
binary format for module linking.
This commit is intended to do almost everything necessary for processing
the alias section of module linking. Most of this is internal
refactoring, the highlights being:
* Type contents are now stored separately from a `wasmtime_env::Module`.
Given that modules can freely alias types and have them used all over
the place, it seemed best to have one canonical location to type
storage which everywhere else points to (with indices). A new
`TypeTables` structure is produced during compilation which is shared
amongst all member modules in a wasm blob.
* Instantiation is heavily refactored to account for module linking. The
main gotcha here is that imports are now listed as "initializers". We
have a sort of pseudo-bytecode-interpreter which interprets the
initialization of a module. This is more complicated than just
matching imports at this point because in the module linking proposal
the module, alias, import, and instance sections may all be
interleaved. This means that imports aren't guaranteed to show up at
the beginning of the address space for modules/instances.
Otherwise most of the changes here largely fell out from these two
design points. Aliases are recorded as initializers in this scheme.
Copying around type information and/or just knowing type information
during compilation is also pretty easy since everything is just a
pointer into a `TypeTables` and we don't have to actually copy any types
themselves. Lots of various refactorings were necessary to accomodate
these changes.
Tests are hoped to cover a breadth of functionality here, but not
necessarily a depth. There's still one more piece of the module linking
proposal missing which is exporting instances/modules, which will come
in a future PR.
It's also worth nothing that there's one large TODO which isn't
implemented in this change that I plan on opening an issue for.
With module linking when a set of modules comes back from compilation
each modules has all the trampolines for the entire set of modules. This
is quite a lot of duplicate trampolines across module-linking modules.
We'll want to refactor this at some point to instead have only one set
of trampolines per set of module linking modules and have them shared
from there. I figured it was best to separate out this change, however,
since it's purely related to resource usage, and doesn't impact
non-module-linking modules at all.
cc #2094
* Provide filename/line number information in `Trap`
This commit extends the `Trap` type and `Store` to retain DWARF debug
information found in a wasm file unconditionally, if it's present. This
then enables us to print filenames and line numbers which point back to
actual source code when a trap backtrace is printed. Additionally the
`FrameInfo` type has been souped up to return filename/line number
information as well.
The implementation here is pretty simplistic currently. The meat of all
the work happens in `gimli` and `addr2line`, and otherwise wasmtime is
just schlepping around bytes of dwarf debuginfo here and there!
The general goal here is to assist with debugging when using wasmtime
because filenames and line numbers are generally orders of magnitude
better even when you already have a stack trace. Another nicety here is
that backtraces will display inlined frames (learned through debug
information), improving the experience in release mode as well.
An example of this is that with this file:
```rust
fn main() {
panic!("hello");
}
```
we get this stack trace:
```
$ rustc foo.rs --target wasm32-wasi -g
$ cargo run foo.wasm
Finished dev [unoptimized + debuginfo] target(s) in 0.16s
Running `target/debug/wasmtime foo.wasm`
thread 'main' panicked at 'hello', foo.rs:2:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Error: failed to run main module `foo.wasm`
Caused by:
0: failed to invoke command default
1: wasm trap: unreachable
wasm backtrace:
0: 0x6c1c - panic_abort::__rust_start_panic::abort::h2d60298621b1ccbf
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/panic_abort/src/lib.rs:77:17
- __rust_start_panic
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/panic_abort/src/lib.rs:32:5
1: 0x68c7 - rust_panic
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:626:9
2: 0x65a1 - std::panicking::rust_panic_with_hook::h2345fb0909b53e12
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:596:5
3: 0x1436 - std::panicking::begin_panic::{{closure}}::h106f151a6db8c8fb
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:506:9
4: 0xda8 - std::sys_common::backtrace::__rust_end_short_backtrace::he55aa13f22782798
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/sys_common/backtrace.rs:153:18
5: 0x1324 - std::panicking::begin_panic::h1727e7d1d719c76f
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:505:12
6: 0xfde - foo::main::h2db1313a64510850
at /Users/acrichton/code/wasmtime/foo.rs:2:5
7: 0x11d5 - core::ops::function::FnOnce::call_once::h20ee1cc04aeff1fc
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/ops/function.rs:227:5
8: 0xddf - std::sys_common::backtrace::__rust_begin_short_backtrace::h054493e41e27e69c
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/sys_common/backtrace.rs:137:18
9: 0x1d5a - std::rt::lang_start::{{closure}}::hd83784448d3fcb42
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/rt.rs:66:18
10: 0x69d8 - core::ops::function::impls::<impl core::ops::function::FnOnce<A> for &F>::call_once::h564d3dad35014917
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/ops/function.rs:259:13
- std::panicking::try::do_call::hdca4832ace5a8603
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:381:40
- std::panicking::try::ha8624a1a6854b456
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:345:19
- std::panic::catch_unwind::h71421f57cf2bc688
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panic.rs:382:14
- std::rt::lang_start_internal::h260050c92cd470af
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/rt.rs:51:25
11: 0x1d0c - std::rt::lang_start::h0b4bcf3c5e498224
at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/rt.rs:65:5
12: 0xffc - <unknown>!__original_main
13: 0x393 - __muloti4
at /cargo/registry/src/github.com-1ecc6299db9ec823/compiler_builtins-0.1.35/src/macros.rs:269
```
This is relatively noisy by default but there's filenames and line
numbers! Additionally frame 10 can be seen to have lots of frames
inlined into it. All information is always available to the embedder but
we could try to handle the `__rust_begin_short_backtrace` and
`__rust_end_short_backtrace` markers to trim the backtrace by default as
well.
The only gotcha here is that it looks like `__muloti4` is out of place.
That's because the libc that Rust ships with doesn't have dwarf
information, although I'm not sure why we land in that function for
symbolizing it...
* Add a configuration switch for debuginfo
* Control debuginfo by default with `WASM_BACKTRACE_DETAILS`
* Try cpp_demangle on demangling as well
* Rename to WASMTIME_BACKTRACE_DETAILS