This commit replaces #4869 and represents the actual version bump that
should have happened had I remembered to bump the in-tree version of
Wasmtime to 1.0.0 prior to the branch-cut date. Alas!
This was likely a copy-paste from the `ast::Pattern` case, but here it
is checking a term name in `ast::Expr` and so should say "... in
expression", not "... in pattern".
* Support shadowing in isle
* Re-run the isle build.rs if the examples change
* Print error messages when isle tests fail
* Move run tests
* Refactor `let` uses that don't need to introduce unique names
The ISLE language's lexer previously used a very primitive
`i64::from_str_radix` call to parse integer constants, allowing values
in the range -2^63..2^63 only. Also, underscores to separate digits (as
is allwoed in Rust) were not supported. Finally, 128-bit constants were
not supported at all.
This PR addresses all issues above:
- Integer constants are internally stored as 128-bit values.
- Parsing supports either signed (-2^127..2^127) or unsigned (0..2^128)
range. Negation works independently of that, so one can write
`-0xffff..ffff` (128 bits wide, i.e., -(2^128-1)) to get a `1`.
- Underscores are supported to separate groups of digits, so one can
write `0xffff_ffff`.
- A minor oversight was fixed: hex constants can start with `0X`
(uppercase) as well as `0x`, for consistency with Rust and C.
This PR also adds a new kind of ISLE test that actually runs a driver
linked to compiled ISLE code; we previously didn't have any such tests,
but it is now quite useful to assert correct interpretation of constant
values.
* Update tracing-core to a version which doesn't depend on lazy-static.
* Update crossbeam-utils to a version that doesn't depend on lazy-static.
* Update crossbeam-epoch to a version that doesn't depend on lazy-static.
* Update clap to a version that doesn't depend on lazy-static.
* Convert Wasmtime's own use of lazy_static to once_cell.
* Make `GDB_REGISTRATION`'s comment a doc comment.
* Fix compilation on Windows.
In #4143 we made ISLE compilation part of the normal build flow again,
to avoid the issues with the checked-in source. To make this acceptably
fast, we cut down dependencies of the ISLE compiler, so the "fancy"
error printing is now optional. When not included, it just prints error
messages to stderr in a list. However, this did not include file
locations. It might be nice to have this without enabling the "fancy
printing" and waiting for that to build.
Fortunately most of the plumbing for this was already present (we had it
at one point before switching to miette). This PR adds back locations to
the basic error output. It now looks like:
```
Error building ISLE files: ISLE errors:
src/isa/aarch64/inst.isle:1:1: parse error: Unexpected token Symbol("asdf")
```
The HashMap implementation is significantly simpler than the BTreeMap
implementation. Because of this switching reduces compilation time of
cranelift-isle by about 10%.
# Before
$ hyperfine --prepare "cargo clean" "cargo build"
Benchmark 1: cargo build
Time (mean ± σ): 5.221 s ± 0.094 s [User: 10.659 s, System: 0.734 s]
Range (min … max): 5.151 s … 5.420 s 10 runs
# After
$ hyperfine --prepare "cargo clean" "cargo build"
Benchmark 1: cargo build
Time (mean ± σ): 4.746 s ± 0.150 s [User: 9.109 s, System: 0.721 s]
Range (min … max): 4.630 s … 5.144 s 10 runs
This PR fixes#4066: it modifies the Cranelift `build.rs` workflow to
invoke the ISLE DSL compiler on every compilation, rather than only
when the user specifies a special "rebuild ISLE" feature.
The main benefit of this change is that it vastly simplifies the mental
model required of developers, and removes a bunch of failure modes
we have tried to work around in other ways. There is now just one
"source of truth", the ISLE source itself, in the repository, and so there
is no need to understand a special "rebuild" step and how to handle
merge errors. There is no special process needed to develop the compiler
when modifying the DSL. And there is no "noise" in the git history produced
by constantly-regenerated files.
The two main downsides we discussed in #4066 are:
- Compile time could increase, by adding more to the "meta" step before the main build;
- It becomes less obvious where the source definitions are (everything becomes
more "magic"), which makes exploration and debugging harder.
This PR addresses each of these concerns:
1. To maintain reasonable compile time, it includes work to cut down the
dependencies of the `cranelift-isle` crate to *nothing* (only the Rust stdlib),
in the default build. It does this by putting the error-reporting bits
(`miette` crate) under an optional feature, and the logging (`log` crate) under
a feature-controlled macro, and manually writing an `Error` impl rather than
using `thiserror`. This completely avoids proc macros and the `syn` build slowness.
The user can still get nice errors out of `miette`: this is enabled by specifying
a Cargo feature `--features isle-errors`.
2. To allow the user to optionally inspect the generated source, which nominally
lives in a hard-to-find path inside `target/` now, this PR adds a feature `isle-in-source-tree`
that, as implied by the name, moves the target for ISLE generated source into
the source tree, at `cranelift/codegen/isle_generated_source/`. It seems reasonable
to do this when an explicit feature (opt-in) is specified because this is how ISLE regeneration
currently works as well. To prevent surprises, if the feature is *not* specified, the
build fails if this directory exists.
* ISLE compiler: fix priority-trie interval bug. (#4093)
This PR fixes a bug in the ISLE compiler related to rule priorities.
An important note first: the bug did not affect the correctness of the
Cranelift backends, either in theory (because the rules should be
correct applied in any order, even contrary to the stated priorities)
or in practice (because the generated code actually does not change at
all with the DSL compiler fix, only with a separate minimized bug
example).
The issue was a simple swap of `min` for `max` (see first
commit). This is the minimal fix, I think, to get a correct
priority-trie with the minimized bug example in this commit.
However, while debugging this, I started to convince myself that the
complexity of merging multiple priority ranges using the sort of
hybrid interval tree / string-matching trie data structure was
unneeded. The original design was built with the assumption we might
have a bunch of different priority levels, and would need the
efficiency of merging where possible. But in practice we haven't used
priorities this way: the vast majority of lowering rules exist at the
default (priority 0), and just a few overrides are explicitly at prio
1, 2 or (rarely) 3.
So, it turns out to be a lot simpler to label trie edges with (prio,
symbol) rather than (prio-range, symbol), and delete the whole mess of
interval-splitting logic on insertion. It's easier (IMHO) to convince
oneself that the resulting insertion algorithm is correct.
I was worried that this might impact the size of the generated Rust
code or its runtime, but In fact, to my initial surprise (but it makes
sense given the above "rarely used" factor), the generated code with
this compiler fix is *exactly the same*. I rebuilt with `--features
rebuild-isle,all-arch` but... there were no diffs to commit! This is
to me the simplest evidence that we didn't really need that
complexity.
* Fix earlier commit from #4093: properly sort trie.
This commit fixes an in-hindsight-obvious bug in #4093: the trie's edges
must be sorted recursively, not just at the top level.
With this fix, the generated code differs only in one cosmetic way (a
let-binding moves) but otherwise is the same.
This includes @fitzgen's fix to the CI (from the revert in #4102) that
deletes manifests to actually check that the checked-in source is
consistent with the checked-in compiler. The force-rebuild step is now
in a shell script for convenience: anyone hacking on the ISLE compiler
itself can use this script to more easily rebuild everything.
* Add note to build.rs to remind to update force-rebuild-isle.sh
* Revert "ISLE compiler: fix priority-trie interval bug. (#4093)"
This reverts commit 2122337112.
* ci: Delete ISLE manifest files to force an ISLE rebuild
This makes it so that we actually rebuild ISLE rather than just check that the
manifests are up-to-date.
This PR fixes a bug in the ISLE compiler related to rule priorities.
An important note first: the bug did not affect the correctness of the
Cranelift backends, either in theory (because the rules should be
correct applied in any order, even contrary to the stated priorities)
or in practice (because the generated code actually does not change at
all with the DSL compiler fix, only with a separate minimized bug
example).
The issue was a simple swap of `min` for `max` (see first
commit). This is the minimal fix, I think, to get a correct
priority-trie with the minimized bug example in this commit.
However, while debugging this, I started to convince myself that the
complexity of merging multiple priority ranges using the sort of
hybrid interval tree / string-matching trie data structure was
unneeded. The original design was built with the assumption we might
have a bunch of different priority levels, and would need the
efficiency of merging where possible. But in practice we haven't used
priorities this way: the vast majority of lowering rules exist at the
default (priority 0), and just a few overrides are explicitly at prio
1, 2 or (rarely) 3.
So, it turns out to be a lot simpler to label trie edges with (prio,
symbol) rather than (prio-range, symbol), and delete the whole mess of
interval-splitting logic on insertion. It's easier (IMHO) to convince
oneself that the resulting insertion algorithm is correct.
I was worried that this might impact the size of the generated Rust
code or its runtime, but In fact, to my initial surprise (but it makes
sense given the above "rarely used" factor), the generated code with
this compiler fix is *exactly the same*. I rebuilt with `--features
rebuild-isle,all-arch` but... there were no diffs to commit! This is
to me the simplest evidence that we didn't really need that
complexity.
This PR removes "argument polarity": the feature of ISLE extractors that lets them take
inputs aside from the value to be matched.
Cases that need this expressivity have been subsumed by #4072 with if-let clauses;
we can now finally remove this misfeature of the language, which has caused significant
confusion and has always felt like a bit of a hack.
This PR (i) removes the feature from the ISLE compiler; (ii) removes it from the reference
documentation; and (iii) refactors away all uses of the feature in our three existing
backends written in ISLE.
In #4072 I mistakenly put the subsection about if-let clauses in the
language doc just below the next section header, so it's in the wrong
section ("mapping to Rust"). This moves it back upward to where it
should be. Sorry about that!
This PR adds support for `if-let` clauses, as proposed in
bytecodealliance/rfcs#21. These clauses augment the left-hand side
(pattern-matching phase) of rules in the ISLE instruction-selection DSL
with sub-patterns matching on sub-expressions. The ability to list
additional match operations to perform, out-of-line from the original
toplevel pattern, greatly simplifies some idioms. See the RFC for more
details and examples of use.
This fixes a bug where the ISLE compiler would refuse to accept
out-of-order declarations in the order of: (i) use of an implicit
conversion backed by an extern constructor; (ii) extern declaration
for that constructor.
The issue was one of phase separation: we were capturing and noting
"extern constructor" status on terms in the same pass in which we were
typechecking and resolving implicit conversions. Given this knowledge,
the fix is straightforward: externs are picked up in a prior pass.
* Update to clap 3.0
This commit migrates all CLI commands internally used in this project
from structopt/clap2 to clap 3. The intent here is to ensure that we're
using maintained versions of the dependencies as structopt and clap 2
are less maintained nowadays. Most transitions were pretty
straightforward and mostly dealing with structopt/clap3 differences.
* Fix a number of `cargo deny` errors
This commit fixes a few errors around duplicate dependencies which
arose from the prior update to clap3. This also uses a new feature in
`deny.toml`, `skip-tree`, which allows having a bit more targeted
ignores for skips of duplicate version checks. This showed a few more
locations in Wasmtime itself where we could update some dependencies.
Currently, a variable can be named in two different ways in an ISLE
pattern. One can write a pattern like `(T x y)` that binds the two
args of `T` with the subpatterns `x` and `y`, each of which match
anything and capture the value as a bound variable. Or, one can write
a pattern like `(T x =x)`, where the first arg pattern `x` captures
the value in `x` and the second arg pattern `=x` matches only the same
value that was already captured.
It turns out (thanks to @fitzgen for this insight here [1]) that this
distinction can actually be inferred easily: if `x` isn't bound, then
mentioning it binds it; otherwise, it matches only the already-bound
variable. There's no concern about ordering (one mention binding
vs. the other) because (i) the value is equal either way, and (ii) the
types at both sites must be the same.
This language tweak seems like it should simplify things nicely! We
can remove the `=x` syntax later if we want, but this PR doesn't do
so.
[1] https://github.com/bytecodealliance/wasmtime/pull/4071#discussion_r859111513
* Upgrade all crates to the Rust 2021 edition
I've personally started using the new format strings for things like
`panic!("some message {foo}")` or similar and have been upgrading crates
on a case-by-case basis, but I think it probably makes more sense to go
ahead and blanket upgrade everything so 2021 features are always
available.
* Fix compile of the C API
* Fix a warning
* Fix another warning
* Bump to 0.36.0
* Add a two-week delay to Wasmtime's release process
This commit is a proposal to update Wasmtime's release process with a
two-week delay from branching a release until it's actually officially
released. We've had two issues lately that came up which led to this proposal:
* In #3915 it was realized that changes just before the 0.35.0 release
weren't enough for an embedding use case, but the PR didn't meet the
expectations for a full patch release.
* At Fastly we were about to start rolling out a new version of Wasmtime
when over the weekend the fuzz bug #3951 was found. This led to the
desire internally to have a "must have been fuzzed for this long"
period of time for Wasmtime changes which we felt were better
reflected in the release process itself rather than something about
Fastly's own integration with Wasmtime.
This commit updates the automation for releases to unconditionally
create a `release-X.Y.Z` branch on the 5th of every month. The actual
release from this branch is then performed on the 20th of every month,
roughly two weeks later. This should provide a period of time to ensure
that all changes in a release are fuzzed for at least two weeks and
avoid any further surprises. This should also help with any last-minute
changes made just before a release if they need tweaking since
backporting to a not-yet-released branch is much easier.
Overall there are some new properties about Wasmtime with this proposal
as well:
* The `main` branch will always have a section in `RELEASES.md` which is
listed as "Unreleased" for us to fill out.
* The `main` branch will always be a version ahead of the latest
release. For example it will be bump pre-emptively as part of the
release process on the 5th where if `release-2.0.0` was created then
the `main` branch will have 3.0.0 Wasmtime.
* Dates for major versions are automatically updated in the
`RELEASES.md` notes.
The associated documentation for our release process is updated and the
various scripts should all be updated now as well with this commit.
* Add notes on a security patch
* Clarify security fixes shouldn't be previewed early on CI
It seems our `compile` fuzz target for ISLE has not been regularly
tested, as it was never updated for the `isle` -> `cranelift_isle` crate
renaming. This PR fixes it to compile again.
This also includes a simple fix in the typechecking: when verifying that
a term decl is valid, we might insert a term ID into the name->ID map
before fully checking that all of the types exist, and then skipping
(for error recovery purposes) the actual push onto the term-signature
vector if one of the types does have an error. This phantom TID can
later cause a panic. The fix is to avoid adding to the map until we have
fully verified the term decl.
Add support for implicit type conversions to ISLE.
This feature allows the DSL user to register to the compiler that a
particular term (used as a constructor or extractor) converts from one
type to another. The compiler will then *automatically* insert this term
whenever a type mismatch involving that specific pair of types occurs.
This significantly cleans up many uses of the ISLE DSL. For example,
when defining the compiler backends, we often have newtypes like `Gpr`
around `Reg` (signifying a particular type of register); we can define
a conversion from Gpr to Reg automatically.
Conversions can also have side-effects, as long as these side-effects
are idempotent. For example, `put_value_in_reg` in a compiler backend
has the effect of marking the value as used, causing codegen to produce
it, and assigns a register to the value; but multiple invocations of
this will return the same register for the same value. Thus it is safe
to use it as an implicit conversion that may be invoked multiple times.
This is documented in the ISLE-Cranelift integration document.
This PR also adds some testing infrastructure to the ISLE compiler,
checking that "pass" tests pass through the DSL compiler, "fail" tests
do not, and "link" tests are able to generate code and link that code
with corresponding Rust code.
* x64: port `select` using an FP comparison to ISLE
This change includes quite a few interlocking parts, required mainly by
the current x64 conventions in ISLE:
- it adds a way to emit a `cmove` with multiple OR-ing conditions;
because x64 ISLE cannot currently safely emit a comparison followed
by several jumps, this adds `MachInst::CmoveOr` and
`MachInst::XmmCmoveOr` macro instructions. Unfortunately, these macro
instructions hide the multi-instruction sequence in `lower.isle`
- to properly keep track of what instructions consume and produce
flags, @cfallin added a way to pass around variants of
`ConsumesFlags` and `ProducesFlags`--these changes affect all
backends
- then, to lower the `fcmp + select` CLIF, this change adds several
`cmove*_from_values` helpers that perform all of the awkward
conversions between `Value`, `ValueReg`, `Reg`, and `Gpr/Xmm`; one
upside is that now these lowerings have much-improved documentation
explaining why the various `FloatCC` and `CC` choices are made the
the way they are.
Co-authored-by: Chris Fallin <chris@cfallin.org>
Add accessors to prelude.isle to access data fields of
`func_addr` and `symbol_value` instructions.
These are based on similar versions I had added to the s390x
back-end, but are a bit more straightforward to use.
- func_ref_data: Extract SigRef, ExternalName, and RelocDistance
fields given a FuncRef.
- symbol_value_data: Extract ExternalName, RelocDistance, and
offset fields given a GlobalValue representing a Symbol.
- reloc_distance_near: Test for RelocDistance::Near.
The s390x back-end is changed to use these common versions.
Note that this exposed a bug in common isle code: This extractor:
(extractor (load_sym inst)
(and inst
(load _ (def_inst (symbol_value
(symbol_value_data _
(reloc_distance_near) offset)))
(i64_from_offset
(memarg_symbol_offset_sum <offset _)))))
would raise an assertion in sema.rs due to a supposed cycle in
extractor definitions. But there was no actual cycle, it was
simply that the extractor tree refers twice to the `insn_data`
extractor (once via the `load` and once via the `symbol_value`
extractor). Fixed by checking for pre-existing definitions only
along one path in the tree, not across the whole tree.
This documentation provides details for all of the ISLE language
features, and detailed rationale for why many of them are designed in
the way that they are. It is hopefully both a reasonable tutorial and
reference for someone looking to understand the DSL.
Note that this documentation is separate from and orthogonal to the
work to document the Cranelift bindings and integration work that
@fitzgen has covered well in #3556. This document can link to that one
and vice-versa once they are both in-tree.
* aarch64: Initial work to transition backend to ISLE
This commit is what is hoped to be the initial commit towards migrating
the aarch64 backend to ISLE. There's seemingly a lot of changes here but
it's intended to largely be code motion. The current thinking is to
closely follow the x64 backend for how all this is handled and
organized.
Major changes in this PR are:
* The `Inst` enum is now defined in ISLE. This avoids having to define
it in two places (once in Rust and once in ISLE). I've preserved all
the comments in the ISLE and otherwise this isn't actually a
functional change from the Rust perspective, it's still the same enum
according to Rust.
* Lots of little enums and things were moved to ISLE as well. As with
`Inst` their definitions didn't change, only where they're defined.
This will give future ISLE PRs access to all these operations.
* Initial code for lowering `iconst`, `null`, and `bconst` are
implemented. Ironically none of this is actually used right now
because constant lowering is handled in `put_input_in_regs` which
specially handles constants. Nonetheless I wanted to get at least
something simple working which shows off how to special case various
things that are specific to AArch64. In a future PR I plan to hook up
const-lowering in ISLE to this path so even though
`iconst`-the-clif-instruction is never lowered this should use the
const lowering defined in ISLE rather than elsewhere in the backend
(eventually leading to the deletion of the non-ISLE lowering).
* The `IsleContext` skeleton is created and set up for future additions.
* Some code for ISLE that's shared across all backends now lives in
`isle_prelude_methods!()` and is deduplicated between the AArch64
backend and the x64 backend.
* Register mapping is tweaked to do the same thing for AArch64 that it
does for x64. Namely mapping virtual registers is supported instead of
just virtual to machine registers.
My main goal with this PR was to get AArch64 into a place where new
instructions can be added with relative ease. Additionally I'm hoping to
figure out as part of this change how much to share for ISLE between
AArch64 and x64 (and other backends).
* Don't use priorities with rules
* Update .gitattributes with concise syntax
* Deduplicate some type definitions
* Rebuild ISLE
* Move isa::isle to machinst::isle