* LICM pass
* Uses loop analysis to detect loop tree
* For each loop (starting with the inner ones), create a pre-header and move there loop-invariant instructions
* An instruction is loop invariant if it does not use as argument a value defined earlier in the loop
* File tests to check LICM's correctness
* Optimized pre-header creation
If the loop already has a natural pre-header, we use it instead of creating a new one.
The natural pre-header of a loop is the only predecessor of the header it doesn't dominate.
* Implemented in two passes
* First pass discovers the loops headers (they dominate one of their predecessors)
* Second pass traverses the blocks of each loop
* Discovers the loop tree structure
* Offers a new LoopAnalysis data structure queried from outside the module
* Skeleton simple_gvn pass.
* Basic testing infrastructure for simple-gvn.
* Add can_load and can_store flags to instructions.
* Move the replace_values function into the DataFlowGraph.
* Make InstructionData derive from Hash, PartialEq, and Eq.
* Make EntityList's hash and eq functions panic.
* Change Ieee32 and Ieee64 to store u32 and u64, respectively.
Compute exact EBB header offsets and check that branches are in range.
Not implemented yet: Relax branches that are not in range.
Invoke the relax_branches() pass from the 'test binemit' file tests so
they can verify the proper encoding of branch instructions too.
When the CRETONNE_DBG environment variable is set, send debug messages
to a file named cretonne.dbg.*.
The trace facility is only enabled when debug assertions are on.
Add an abi module with code that is probably useful to all ISAs when
implementing this function.
Add a unit() method to RegClassData which can be used to index the
register units in a class.
This will provide main entry points for compiling functions, and it
serves as a place for keeping data structures that should be preserved
between function compilations to reduce allocator thrashing.
So far, Context is just basic scaffolding. More to be added.
This implements the classic Briggs/Torczon sparse set construct.
Adapt it to our existing EntityRef infrastructure so we can use types
keys instead of just integers like the original paper does.
Also provide a SparseSet<T> type alias which implements a sparse set of
entity refeences. This is actually closer to what the original paper
describes.
We will track live ranges separately for each SSA value, rather than per
virtual register like LLVM does.
This is the basis for a register allocator, so place it in a new
regalloc module.
Give these crates each a more standard directory layout with sources in
a 'src' sub-sirectory and Cargo.toml in the top lib/foo directory.
Add license and description fields to each.
The build script for the cretonne crate now lives in
'lib/cretonne/build.rs' separating it from the normal library sources
under 'lib/cretonne/src'.