A CallConv enum on every function signature makes it possible to
generate calls to functions with different calling conventions within
the same ISA / within a single function.
The calling conventions also serve as a way of customizing Cretonne's
behavior when embedded inside a VM. As an example, the SpiderWASM
calling convention is used to compile WebAssembly functions that run
inside the SpiderMonkey virtual machine.
All function signatures must have a calling convention at the end, so
this changes the textual IL syntax.
Before:
sig1 = signature(i32, f64) -> f64
After
sig1 = (i32, f64) -> f64 native
sig2 = (i32) spiderwasm
When printing functions, the signature goes after the return types:
function %r1() -> i32, f32 spiderwasm {
ebb1:
...
}
In the parser, this calling convention is optional and defaults to
"native". This is mostly to avoid updating all the existing test cases
under filetests/. When printing a function, the calling convention is
always included, including for "native" functions.
* Function names should start with %
* Create FunctionName from string
* Implement displaying of FunctionName as %nnnn with fallback to #xxxx
* Run rustfmt and fix FunctionName::with_string in parser
* Implement FunctionName::new as a generic function
* Binary function names should start with #
* Implement NameRepr for function name
* Fix examples in docs to reflect that function names start with %
* Rebase and fix filecheck tests
The DominatorTree has existing DomNodes per EBB that can be used in lieu
of expensive HastSets for the depth-first traversal of the CFG.
Make the computed and cached post-order available for other passes
through the `cfg_postorder()` method which returns a slice.
The post-order algorithm is essentially the same as the one in
ControlFlowGraph::postorder_ebbs(), except it will never push a
successor node that has already been visited once. This is more
efficient, but it generates a different post-order.
Change the cfg_traversal tests to check this new algorithm.
Move the flow graph computation into a compute method which can be
called with multiple functions.
This allows us to reuse the ControlFlowGraph memory and keep an instance
in the Context.