This commit removes the pooling of `Instance` allocations from the
pooling instance allocator. This means that the allocation of `Instance`
(and `VMContext`) memory, now always happens through the system `malloc`
and `free` instead of optionally being part of the pooling instance
allocator. Along the way this refactors the `InstanceAllocator` trait so
the pooling and on-demand allocators can share more structure with this
new property of the implementation.
The main rationale for this commit is to reduce the RSS of long-lived
programs which allocate instances with the pooling instance allocator
and aren't using the "next available" allocation strategy. In this
situation the memory for an instance is never decommitted until the end
of the program, meaning that eventually all instance slots will become
occupied and resident. This has the effect of Wasmtime slowly eating
more and more memory over time as each slot gets an instance allocated.
By switching to the system allocator this should reduce the current RSS
workload from O(used slots) to O(active slots), which is more in line
with expectations.
* Fix libcall relocations for precompiled modules
This commit fixes some asserts and support for relocation libcalls in
precompiled modules loaded from disk. In doing so this reworks how mmaps
are managed for files from disk. All non-file-backed `Mmap` entries are
read/write but file-backed versions were readonly. This commit changes
this such that all `Mmap` objects, even if they're file-backed, start as
read/write. The file-based versions all use copy-on-write to preserve
the private-ness of the mapping.
This is not functionally intended to change anything. Instead this
should have some more memory writable after a module is loaded but the
text section, for example, is still left as read/execute when loading is
finished. Additionally this makes modules compiled in memory more
consistent with modules loaded from disk.
* Update a comment
* Force images to become readonly during publish
This marks compiled images as entirely readonly during the
`CodeMemory::publish` step which happens just before the text section
becomes executable. This ensures that all images, no matter where they
come from, are guaranteed frozen before they start executing.
* Update WIT tooling used by Wasmtime
This commit updates the WIT tooling, namely the wasm-tools family of
crates, with recent updates. Notably:
* bytecodealliance/wasm-tools#867
* bytecodealliance/wasm-tools#871
This updates index spaces in components and additionally bumps the
minimum required version of the component binary format to be consumed
by Wasmtime (because of the index space changes). Additionally WIT
tooling now fully supports `use`.
Note that WIT tooling doesn't, at this time, fully support packages and
depending on remotely defined WIT packages. Currently WIT still needs to
be vendored in the project. It's hoped that future work with `cargo
component` and possible integration here could make the story about
depending on remotely-defined WIT more ergonomic and streamlined.
* Fix `bindgen!` codegen tests
* Add a test for `use` paths an implement support
* Update to crates.io versions of wasm-tools
* Uncomment codegen tests
This commit fixes an issue where when backtraces were disabled but a
host function returned an error it would trigger a debug assertion
within Wasmtime. The fix here is to update the condition of the debug
assertion and add a test doing this behavior to ensure it works in the
future.
I've also further taken the liberty in this commit to remove the
deprecation notice for `Config::wasm_backtrace`. We don't really have a
strong reason for removing this functionality at this time and users
have multiple times now reported issues with performance that seem
worthwhile to keep the option. The latest issue, #5577, has a use case
where it appears the quadratic behavior is back in a way that Wasmtime
won't be able to detect. Namely with lots of wasm interleaved with host
on the stack if the original error isn't threaded through the entire
time then each host error will trigger a new backtrace since it doesn't
see a prior backtrace in the error being returned.
While this could otherwise be fixed with only capturing one contiguous
backtrace perhaps this seems reasonable enough to leave the
`wasm_backtrace` config option for now.
Closes#5577
The definitions of `wasmtime::component::Val::Float{32,64}` mirrored
`wasmtime::Val::F{32,64}` by using integers as their wrapped types,
storing the bit representation of their floating point values.
This was necessary for the core Wasm `f32`/`f64` types because Rust
floats don't have guaranteed NaN bit representations.
The component model `float32`/`float64` types require NaN
canonicalization, so we can use normal Rust `f{32,64}` instead.
Closes#5480
This adds a new error type `UnknownImportError` which will be returned
(wrapped in an `anyhow::Error`) by `Linker::instantiate{,_async,_pre}`
if a module has an unresolvable import.
This error type is also used by `Linker::define_unknown_imports_as_traps`;
any resulting traps will also downcast to `UnknownImportError`.
Closes#5416
* Account for fuel before unconditionally trapping Wasm accesses
Fixes#5445
* Add a test for fuel accounting and unconditionally trapping memory accesses
* wip
* start trying to write a runtime test
* cut out all the more complex test cases until i get this one working
* add macro parsing for the trappable error type config
* runtime result tests works for an empty and a string error type
* debugging: macro is broken because interfaces dont have names???
* thats how you name interfaces
* record error and variant error work
* show a concrete trap type, remove debug
* delete clap annotations from wit-bindgen crate
these are not used - clap isnt even an optional dep here - but were a holdover from the old home
* Import Wasmtime support from the `wit-bindgen` repo
This commit imports the `wit-bindgen-gen-host-wasmtime-rust` crate from
the `wit-bindgen` repository into the upstream Wasmtime repository. I've
chosen to not import the full history here since the crate is relatively
small and doesn't have a ton of complexity. While the history of the
crate is quite long the current iteration of the crate's history is
relatively short so there's not a ton of import there anyway. The
thinking is that this can now continue to evolve in-tree.
* Refactor `wasmtime-component-macro` a bit
Make room for a `wit_bindgen` macro to slot in.
* Add initial support for a `bindgen` macro
* Add tests for `wasmtime::component::bindgen!`
* Improve error forgetting `async` feature
* Add end-to-end tests for bindgen
* Add an audit of `unicase`
* Add a license to the test-helpers crate
* Add vet entry for `pulldown-cmark`
* Update publish script with new crate
* Try to fix publish script
* Update audits
* Update lock file
* Simplify the `ModuleRuntimeInfo` trait slightly
Fold two functions into one as they're only called from one location
anyway.
* Remove ModuleRuntimeInfo::signature
This is redundant as the array mapping is already stored within the
`VMContext` so that can be consulted rather than having a separate trait
function for it. This required altering the `Global` creation slightly
to work correctly in this situation.
* Remove a now-dead constant
* Shared `VMOffsets` across instances
This commit removes the computation of `VMOffsets` to being per-module
instead of per-instance. The `VMOffsets` structure is also quite large
so this shaves off 112 bytes per instance which isn't a huge impact but
should help lower the cost of instantiating small modules.
* Remove `InstanceAllocator::adjust_tunables`
This is no longer needed or necessary with the pooling allocator.
* Fix compile warning
* Fix a vtune warning
* Fix pooling tests
* Fix another test warning
* Add a `WasmBacktrace::new()` constructor
This commit adds a method of manually capturing a backtrace of
WebAssembly frames within a `Store`. The new constructor can be called
with any `AsContext` values, primarily `&Store` and `&Caller`, during
host functions to inspect the calling state.
For now this does not respect the `Config::wasm_backtrace` option and
instead unconditionally captures the backtrace. It's hoped that this can
continue to adapt to needs of embedders by making it more configurable
int he future if necessary.
Closes#5339
* Split `new` into `capture` and `force_capture`
* Remove some custom error types in Wasmtime
These types are mostly cumbersome to work with nowadays that `anyhow` is
used everywhere else. This commit removes `InstantiationError` and
`SetupError` in favor of using `anyhow::Error` throughout. This can
eventually culminate in creation of specific errors for embedders to
downcast to but for now this should be general enough.
* Fix Windows build
* Treat `-` as an alias to `/dev/stdin`
This applies to unix targets only,
as Windows does not have an appropriate alternative.
* Add tests for piped modules from stdin
This applies to unix targets only,
as Windows does not have an appropriate alternative.
* Move precompiled module detection into wasmtime
Previously, wasmtime-cli checked the module to be loaded is
precompiled or not, by pre-opening the given file path to
check if the "\x7FELF" header exists.
This commit moves this branch into the `Module::from_trusted_file`,
which is only invoked with `--allow-precompiled` flag on CLI.
The initial motivation of the commit is, feeding a module to wasmtime
from piped inputs, is blocked by the pre-opening of the module.
The `Module::from_trusted_file`, assumes the --allow-precompiled flag
so there is no piped inputs, happily mmap-ing the module to test
if the header exists.
If --allow-precompiled is not supplied, the existing `Module::from_file`
will be used, without the additional header check as the precompiled
modules are intentionally not allowed on piped inputs for security measures.
One caveat of this approach is that the user may be confused if
he or she tries to execute a precompiled module without
--allow-precompiled, as wasmtime shows an 'input bytes aren't valid
utf-8' error, not directly getting what's going wrong.
So this commit includes a hack-ish workaround for this.
Thanks to @jameysharp for suggesting this idea with a detailed guidance.
* wasmtime: enable stack probing for x86_64 targets.
This commit unconditionally enables stack probing for x86_64 targets.
On Windows, stack probing is always required because of the way Windows commits
stack pages (via guard page access).
Fixes#5340.
* Remove SIMD types from test case.
This commit refactors the internals of `wasmtime_runtime::SharedMemory`
a bit to expose the necessary functions to invoke from the
`wasmtime::SharedMemory` layer. Notably some items are moved out of the
`RwLock` from prior, such as the type and the `VMMemoryDefinition`.
Additionally the organization around the `atomic_*` methods has been
redone to ensure that the `wasmtime`-layer abstraction has a single
method to call into which everything else uses as well.
* feat: implement memory.atomic.notify,wait32,wait64
Added the parking_spot crate, which provides the needed registry for the
operations.
Signed-off-by: Harald Hoyer <harald@profian.com>
* fix: change trap message for HeapMisaligned
The threads spec test wants "unaligned atomic"
instead of "misaligned memory access".
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add test for atomic wait on non-shared memory
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add tests/spec_testsuite/proposals/threads
without pooling and reference types.
Also "shared_memory" is added to the "spectest" interface.
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add atomics_notify.wast
checking that notify with 0 waiters returns 0 on shared and non-shared
memory.
Signed-off-by: Harald Hoyer <harald@profian.com>
* tests: add tests for atomic wait on shared memory
- return 2 - timeout for 0
- return 2 - timeout for 1000ns
- return 1 - invalid value
Signed-off-by: Harald Hoyer <harald@profian.com>
* fixup! feat: implement memory.atomic.notify,wait32,wait64
Signed-off-by: Harald Hoyer <harald@profian.com>
* fixup! feat: implement memory.atomic.notify,wait32,wait64
Signed-off-by: Harald Hoyer <harald@profian.com>
Signed-off-by: Harald Hoyer <harald@profian.com>
* Remove explicit `S` type parameters
This commit removes the explicit `S` type parameter on `Func::typed` and
`Instance::get_typed_func`. Historical versions of Rust required that
this be a type parameter but recent rustcs support a mixture of explicit
type parameters and `impl Trait`. This removes, at callsites, a
superfluous `, _` argument which otherwise never needs specification.
* Fix mdbook examples
This commit is an attempt at improving the safety of using the return
value of the `SharedMemory::data` method. Previously this returned
`*mut [u8]` which, while correct, is unwieldy and unsafe to work with.
The new return value of `&[UnsafeCell<u8>]` has a few advantages:
* The lifetime of the returned data is now connected to the
`SharedMemory` itself, removing the possibility for a class of errors
of accidentally using the prior `*mut [u8]` beyond its original lifetime.
* It's not possibly to safely access `.len()` as opposed to requiring an
`unsafe` dereference before.
* The data internally within the slice is now what retains the `unsafe`
bits, namely indicating that accessing any memory inside of the
contents returned is `unsafe` but addressing it is safe.
I was inspired by the `wiggle`-based discussion on #5229 and felt it
appropriate to apply a similar change here.
* Unconditionally use `MemoryImageSlot`
This commit removes the internal branching within the pooling instance
allocator to sometimes use a `MemoryImageSlot` and sometimes now.
Instead this is now unconditionally used in all situations on all
platforms. This fixes an issue where the state of a slot could get
corrupted if modules being instantiated switched from having images to
not having an image or vice versa.
The bulk of this commit is the removal of the `memory-init-cow`
compile-time feature in addition to adding Windows support to the
`cow.rs` file.
* Fix compile on Unix
* Add a stricter assertion for static memory bounds
Double-check that when a memory is allocated the configuration required
is satisfied by the pooling allocator.
* Implement support for dynamic memories in the pooling allocator
This is a continuation of the thrust in #5207 for reducing page faults
and lock contention when using the pooling allocator. To that end this
commit implements support for efficient memory management in the pooling
allocator when using wasm that is instrumented with bounds checks.
The `MemoryImageSlot` type now avoids unconditionally shrinking memory
back to its initial size during the `clear_and_remain_ready` operation,
instead deferring optional resizing of memory to the subsequent call to
`instantiate` when the slot is reused. The instantiation portion then
takes the "memory style" as an argument which dictates whether the
accessible memory must be precisely fit or whether it's allowed to
exceed the maximum. This in effect enables skipping a call to `mprotect`
to shrink the heap when dynamic memory checks are enabled.
In terms of page fault and contention this should improve the situation
by:
* Fewer calls to `mprotect` since once a heap grows it stays grown and
it never shrinks. This means that a write lock is taken within the
kernel much more rarely from before (only asymptotically now, not
N-times-per-instance).
* Accessed memory after a heap growth operation will not fault if it was
previously paged in by a prior instance and set to zero with `memset`.
Unlike #5207 which requires a 6.0 kernel to see this optimization this
commit enables the optimization for any kernel.
The major cost of choosing this strategy is naturally the performance
hit of the wasm itself. This is being looked at in PRs such as #5190 to
improve Wasmtime's story here.
This commit does not implement any new configuration options for
Wasmtime but instead reinterprets existing configuration options. The
pooling allocator no longer unconditionally sets
`static_memory_bound_is_maximum` and then implements support necessary
for this memory type. This other change to this commit is that the
`Tunables::static_memory_bound` configuration option is no longer gating
on the creation of a `MemoryPool` and it will now appropriately size to
`instance_limits.memory_pages` if the `static_memory_bound` is to small.
This is done to accomodate fuzzing more easily where the
`static_memory_bound` will become small during fuzzing and otherwise the
configuration would be rejected and require manual handling. The spirit
of the `MemoryPool` is one of large virtual address space reservations
anyway so it seemed reasonable to interpret the configuration this way.
* Skip zero memory_size cases
These are causing errors to happen when fuzzing and otherwise in theory
shouldn't be too interesting to optimize for anyway since they likely
aren't used in practice.
This commit changes the APIs in the `wasmtime` crate for configuring the
pooling allocator. I plan on adding a few more configuration options in
the near future and the current structure was feeling unwieldy for
adding these new abstractions.
The previous `struct`-based API has been replaced with a builder-style
API in a similar shape as to `Config`. This is done to help make it
easier to add more configuration options in the future through adding
more methods as opposed to adding more field which could break prior
initializations.
* Return `anyhow::Error` from host functions instead of `Trap`
This commit refactors how errors are modeled when returned from host
functions and additionally refactors how custom errors work with `Trap`.
At a high level functions in Wasmtime that previously worked with
`Result<T, Trap>` now work with `Result<T>` instead where the error is
`anyhow::Error`. This includes functions such as:
* Host-defined functions in a `Linker<T>`
* `TypedFunc::call`
* Host-related callbacks like call hooks
Errors are now modeled primarily as `anyhow::Error` throughout Wasmtime.
This subsequently removes the need for `Trap` to have the ability to
represent all host-defined errors as it previously did. Consequently the
`From` implementations for any error into a `Trap` have been removed
here and the only embedder-defined way to create a `Trap` is to use
`Trap::new` with a custom string.
After this commit the distinction between a `Trap` and a host error is
the wasm backtrace that it contains. Previously all errors in host
functions would flow through a `Trap` and get a wasm backtrace attached
to them, but now this only happens if a `Trap` itself is created meaning
that arbitrary host-defined errors flowing from a host import to the
other side won't get backtraces attached. Some internals of Wasmtime
itself were updated or preserved to use `Trap::new` to capture a
backtrace where it seemed useful, such as when fuel runs out.
The main motivation for this commit is that it now enables hosts to
thread a concrete error type from a host function all the way through to
where a wasm function was invoked. Previously this could not be done
since the host error was wrapped in a `Trap` that didn't provide the
ability to get at the internals.
A consequence of this commit is that when a host error is returned that
isn't a `Trap` we'll capture a backtrace and then won't have a `Trap` to
attach it to. To avoid losing the contextual information this commit
uses the `Error::context` method to attach the backtrace as contextual
information to ensure that the backtrace is itself not lost.
This is a breaking change for likely all users of Wasmtime, but it's
hoped to be a relatively minor change to workaround. Most use cases can
likely change `-> Result<T, Trap>` to `-> Result<T>` and otherwise
explicit creation of a `Trap` is largely no longer necessary.
* Fix some doc links
* add some tests and make a backtrace type public (#55)
* Trap: avoid a trailing newline in the Display impl
which in turn ends up with three newlines between the end of the
backtrace and the `Caused by` in the anyhow Debug impl
* make BacktraceContext pub, and add tests showing downcasting behavior of anyhow::Error to traps or backtraces
* Remove now-unnecesary `Trap` downcasts in `Linker::module`
* Fix test output expectations
* Remove `Trap::i32_exit`
This commit removes special-handling in the `wasmtime::Trap` type for
the i32 exit code required by WASI. This is now instead modeled as a
specific `I32Exit` error type in the `wasmtime-wasi` crate which is
returned by the `proc_exit` hostcall. Embedders which previously tested
for i32 exits now downcast to the `I32Exit` value.
* Remove the `Trap::new` constructor
This commit removes the ability to create a trap with an arbitrary error
message. The purpose of this commit is to continue the prior trend of
leaning into the `anyhow::Error` type instead of trying to recreate it
with `Trap`. A subsequent simplification to `Trap` after this commit is
that `Trap` will simply be an `enum` of trap codes with no extra
information. This commit is doubly-motivated by the desire to always use
the new `BacktraceContext` type instead of sometimes using that and
sometimes using `Trap`.
Most of the changes here were around updating `Trap::new` calls to
`bail!` calls instead. Tests which assert particular error messages
additionally often needed to use the `:?` formatter instead of the `{}`
formatter because the prior formats the whole `anyhow::Error` and the
latter only formats the top-most error, which now contains the
backtrace.
* Merge `Trap` and `TrapCode`
With prior refactorings there's no more need for `Trap` to be opaque or
otherwise contain a backtrace. This commit parse down `Trap` to simply
an `enum` which was the old `TrapCode`. All various tests and such were
updated to handle this.
The main consequence of this commit is that all errors have a
`BacktraceContext` context attached to them. This unfortunately means
that the backtrace is printed first before the error message or trap
code, but given all the prior simplifications that seems worth it at
this time.
* Rename `BacktraceContext` to `WasmBacktrace`
This feels like a better name given how this has turned out, and
additionally this commit removes having both `WasmBacktrace` and
`BacktraceContext`.
* Soup up documentation for errors and traps
* Fix build of the C API
Co-authored-by: Pat Hickey <pat@moreproductive.org>
* Pull `Module` out of `ModuleTextBuilder`
This commit is the first in what will likely be a number towards
preparing for serializing a compiled component to bytes, a precompiled
artifact. To that end my rough plan is to merge all of the compiled
artifacts for a component into one large object file instead of having
lots of separate object files and lots of separate mmaps to manage. To
that end I plan on eventually using `ModuleTextBuilder` to build one
large text section for all core wasm modules and trampolines, meaning
that `ModuleTextBuilder` is no longer specific to one module. I've
extracted out functionality such as function name calculation as well as
relocation resolving (now a closure passed in) in preparation for this.
For now this just keeps tests passing, and the trajectory for this
should become more clear over the following commits.
* Remove component-specific object emission
This commit removes the `ComponentCompiler::emit_obj` function in favor
of `Compiler::emit_obj`, now renamed `append_code`. This involved
significantly refactoring code emission to take a flat list of functions
into `append_code` and the caller is responsible for weaving together
various "families" of functions and un-weaving them afterwards.
* Consolidate ELF parsing in `CodeMemory`
This commit moves the ELF file parsing and section iteration from
`CompiledModule` into `CodeMemory` so one location keeps track of
section ranges and such. This is in preparation for sharing much of this
code with components which needs all the same sections to get tracked
but won't be using `CompiledModule`. A small side benefit from this is
that the section parsing done in `CodeMemory` and `CompiledModule` is no
longer duplicated.
* Remove separately tracked traps in components
Previously components would generate an "always trapping" function
and the metadata around which pc was allowed to trap was handled
manually for components. With recent refactorings the Wasmtime-standard
trap section in object files is now being generated for components as
well which means that can be reused instead of custom-tracking this
metadata. This commit removes the manual tracking for the `always_trap`
functions and plumbs the necessary bits around to make components look
more like modules.
* Remove a now-unnecessary `Arc` in `Module`
Not expected to have any measurable impact on performance, but
complexity-wise this should make it a bit easier to understand the
internals since there's no longer any need to store this somewhere else
than its owner's location.
* Merge compilation artifacts of components
This commit is a large refactoring of the component compilation process
to produce a single artifact instead of multiple binary artifacts. The
core wasm compilation process is refactored as well to share as much
code as necessary with the component compilation process.
This method of representing a compiled component necessitated a few
medium-sized changes internally within Wasmtime:
* A new data structure was created, `CodeObject`, which represents
metadata about a single compiled artifact. This is then stored as an
`Arc` within a component and a module. For `Module` this is always
uniquely owned and represents a shuffling around of data from one
owner to another. For a `Component`, however, this is shared amongst
all loaded modules and the top-level component.
* The "module registry" which is used for symbolicating backtraces and
for trap information has been updated to account for a single region
of loaded code holding possibly multiple modules. This involved adding
a second-level `BTreeMap` for now. This will likely slow down
instantiation slightly but if it poses an issue in the future this
should be able to be represented with a more clever data structure.
This commit additionally solves a number of longstanding issues with
components such as compiling only one host-to-wasm trampoline per
signature instead of possibly once-per-module. Additionally the
`SignatureCollection` registration now happens once-per-component
instead of once-per-module-within-a-component.
* Fix compile errors from prior commits
* Support AOT-compiling components
This commit adds support for AOT-compiled components in the same manner
as `Module`, specifically adding:
* `Engine::precompile_component`
* `Component::serialize`
* `Component::deserialize`
* `Component::deserialize_file`
Internally the support for components looks quite similar to `Module`.
All the prior commits to this made adding the support here
(unsurprisingly) easy. Components are represented as a single object
file as are modules, and the functions for each module are all piled
into the same object file next to each other (as are areas such as data
sections). Support was also added here to quickly differentiate compiled
components vs compiled modules via the `e_flags` field in the ELF
header.
* Prevent serializing exported modules on components
The current representation of a module within a component means that the
implementation of `Module::serialize` will not work if the module is
exported from a component. The reason for this is that `serialize`
doesn't actually do anything and simply returns the underlying mmap as a
list of bytes. The mmap, however, has `.wasmtime.info` describing
component metadata as opposed to this module's metadata. While rewriting
this section could be implemented it's not so easy to do so and is
otherwise seen as not super important of a feature right now anyway.
* Fix windows build
* Fix an unused function warning
* Update crates/environ/src/compilation.rs
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
* func_wrap_async typechecks
* func call async
* instantiate_async
* fixes
* async engine creation for tests
* start adding a component model test for async
* fix wrong check for async support, factor out Instance::new_started to an unchecked impl
* tests: wibbles
* component::Linker::func_wrap: replace IntoComponentFunc with directly accepting a closure
We find that this makes the Linker::func_wrap type signature much easier
to read. The IntoComponentFunc abstraction was adding a lot of weight to
"splat" a set of arguments from a tuple of types into individual
arguments to the closure. Additionally, making the StoreContextMut
argument optional, or the Result<return> optional, wasn't very
worthwhile.
* Fixes for the new style of closure required by component::Linker::func_wrap
* future of result of return
* add Linker::instantiate_async and {Typed}Func::post_return_async
* fix fuzzing generator
* note optimisation opportunity
* simplify test
* component::Linker::func_wrap: replace IntoComponentFunc with directly accepting a closure
We find that this makes the Linker::func_wrap type signature much easier
to read. The IntoComponentFunc abstraction was adding a lot of weight to
"splat" a set of arguments from a tuple of types into individual
arguments to the closure. Additionally, making the StoreContextMut
argument optional, or the Result<return> optional, wasn't very
worthwhile.
* Fixes for the new style of closure required by component::Linker::func_wrap
* fix fuzzing generator
* Add a benchmark for traps with many Wasm<-->host calls on the stack
* Add a test for expected Wasm stack traces with Wasm<--host calls on the stack when we trap
* Don't re-capture backtraces when propagating traps through host frames
This fixes some accidentally quadratic code where we would re-capture a Wasm
stack trace (takes `O(n)` time) every time we propagated a trap through a host
frame back to Wasm (can happen `O(n)` times). And `O(n) * O(n) = O(n^2)`, of
course. Whoops. After this commit, it trapping with a call stack that is `n`
frames deep of Wasm-to-host-to-Wasm calls just captures a single backtrace and
is therefore just a proper `O(n)` time operation, as it is intended to be.
Now we explicitly track whether we need to capture a Wasm backtrace or not when
raising a trap. This unfortunately isn't as straightforward as one might hope,
however, because of the split between `wasmtime::Trap` and
`wasmtime_runtime::Trap`. We need to decide whether or not to capture a Wasm
backtrace inside `wasmtime_runtime` but in order to determine whether to do that
or not we need to reflect on the `anyhow::Error` and see if it is a
`wasmtime::Trap` that already has a backtrace or not. This can't be done the
straightforward way because it would introduce a cyclic dependency between the
`wasmtime` and `wasmtime-runtime` crates. We can't merge those two `Trap`
types-- at least not without effectively merging the whole `wasmtime` and
`wasmtime-runtime` crates together, which would be a good idea in a perfect
world but would be a *ton* of ocean boiling from where we currently are --
because `wasmtime::Trap` does symbolication of stack traces which relies on
module registration information data that resides inside the `wasmtime` crate
and therefore can't be moved into `wasmtime-runtime`. We resolve this problem by
adding a boolean to `wasmtime_runtime::raise_user_trap` that controls whether we
should capture a Wasm backtrace or not, and then determine whether we need a
backtrace or not at each of that function's call sites, which are in `wasmtime`
and therefore can do the reflection to determine whether the user trap already
has a backtrace or not. Phew!
Fixes#5037
* debug assert that we don't record unnecessary backtraces for traps
* Add assertions around `needs_backtrace`
Unfortunately we can't do
debug_assert_eq!(needs_backtrace, trap.inner.backtrace.get().is_some());
because `needs_backtrace` doesn't consider whether Wasm backtraces have been
disabled via config.
* Consolidate `needs_backtrace` calculation followed by calling `raise_user_trap` into one place
* Update spec test repo
Our submodule was accidentally reverted to an older commit as part
of #4271 and while it could be updated to as it was before I went ahead
and updated it to `main`.
* Update ignore directives and test multi-memory
* Update riscv ignores
* Update wasm-tools dependencies
This update brings in a number of features such as:
* The component model binary format and AST has been slightly adjusted
in a few locations. Names are dropped from parameters/results now in
the internal representation since they were not used anyway. At this
time the ability to bind a multi-return function has not been exposed.
* The `wasmparser` validator pass will now share allocations with prior
functions, providing what's probably a very minor speedup for Wasmtime
itself.
* The text format for many component-related tests now requires named
parameters.
* Some new relaxed-simd instructions are updated to be ignored.
I hope to have a follow-up to expose the multi-return ability to the
embedding API of components.
* Update audit information for new crates
We were previously implicitly assuming that all Wasm frames in a stack used the
same `VMRuntimeLimits` as the previous frame we walked, but this is not true
when Wasm in store A calls into the host which then calls into Wasm in store B:
| ... |
| Host | |
+-----------------+ | stack
| Wasm in store A | | grows
+-----------------+ | down
| Host | |
+-----------------+ |
| Wasm in store B | V
+-----------------+
Trying to walk this stack would previously result in a runtime panic.
The solution is to push the maintenance of our list of saved Wasm FP/SP/PC
registers that allow us to identify contiguous regions of Wasm frames on the
stack deeper into `CallThreadState`. The saved registers list is now maintained
whenever updating the `CallThreadState` linked list by making the
`CallThreadState::prev` field private and only accessible via a getter and
setter, where the setter always maintains our invariants.
* Upgrade wasm-tools crates, namely the component model
This commit pulls in the latest versions of all of the `wasm-tools`
family of crates. There were two major changes that happened in
`wasm-tools` in the meantime:
* bytecodealliance/wasm-tools#697 - this commit introduced a new API for
more efficiently reading binary operators from a wasm binary. The old
`Operator`-based reading was left in place, however, and continues to
be what Wasmtime uses. I hope to update Wasmtime in a future PR to use
this new API, but for now the biggest change is...
* bytecodealliance/wasm-tools#703 - this commit was a major update to
the component model AST. This commit almost entirely deals with the
fallout of this change.
The changes made to the component model were:
1. The `unit` type no longer exists. This was generally a simple change
where the `Unit` case in a few different locations were all removed.
2. The `expected` type was renamed to `result`. This similarly was
relatively lightweight and mostly just a renaming on the surface. I
took this opportunity to rename `val::Result` to `val::ResultVal` and
`types::Result` to `types::ResultType` to avoid clashing with the
standard library types. The `Option`-based types were handled with
this as well.
3. The payload type of `variant` and `result` types are now optional.
This affected many locations that calculate flat type
representations, ABI information, etc. The `#[derive(ComponentType)]`
macro now specifically handles Rust-defined `enum` types which have
no payload to the equivalent in the component model.
4. Functions can now return multiple parameters. This changed the
signature of invoking component functions because the return value is
now bound by `ComponentNamedList` (renamed from `ComponentParams`).
This had a large effect in the tests, fuzz test case generation, etc.
5. Function types with 2-or-more parameters/results must uniquely name
all parameters/results. This mostly affected the text format used
throughout the tests.
I haven't added specifically new tests for multi-return but I changed a
number of tests to use it. Additionally I've updated the fuzzers to all
exercise multi-return as well so I think we should get some good
coverage with that.
* Update version numbers
* Use crates.io
This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime.
After the suggestion of Chris, `Function` has been split into mostly two parts:
- on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`.
- on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on.
Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache:
- most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set.
- user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`.
- some refactorings have been made for function names:
- `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name.
- The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with.
The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions.
A basic fuzz target has been introduced that tries to do the bare minimum:
- check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function.
- check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache.
- This last check is less efficient and less likely to happen, so probably should be rethought a bit.
Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip.
Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement.
Fixes#4155.
The spec was expected to change to not bounds-check 0-byte lists/strings
but has since been updated to match `memory.copy` which does indeed
check the pointer for 0-byte copies.
This method configures whether native unwind information (e.g. `.eh_frame` on
Linux) is generated or not.
This helps integrate with third-party stack capturing tools, such as the system
unwinder or the `backtrace` crate. It does not affect whether Wasmtime can
capture stack traces in Wasm code that it is running or not.
Unwind info is always enabled on Windows, since the Windows ABI requires it.
This configuration option defaults to true.
Additionally, we deprecate `Config::wasm_backtrace` since we can always cheaply
capture stack traces ever since
https://github.com/bytecodealliance/wasmtime/pull/4431.
Fixes https://github.com/bytecodealliance/wasmtime/issues/4554
* Implement strings in adapter modules
This commit is a hefty addition to Wasmtime's support for the component
model. This implements the final remaining type (in the current type
hierarchy) unimplemented in adapter module trampolines: strings. Strings
are the most complicated type to implement in adapter trampolines
because they are highly structured chunks of data in memory (according
to specific encodings). Additionally each lift/lower operation can
choose its own encoding for strings meaning that Wasmtime, the host, may
have to convert between any pairwise ordering of string encodings.
The `CanonicalABI.md` in the component-model repo in general specifies
all the fiddly bits of string encoding so there's not a ton of wiggle
room for Wasmtime to get creative. This PR largely "just" implements
that. The high-level architecture of this implementation is:
* Fused adapters are first identified to determine src/dst string
encodings. This statically fixes what transcoding operation is being
performed.
* The generated adapter will be responsible for managing calls to
`realloc` and performing bounds checks. The adapter itself does not
perform memory copies or validation of string contents, however.
Instead each transcoding operation is modeled as an imported function
into the adapter module. This means that the adapter module
dynamically, during compile time, determines what string transcoders
are needed. Note that an imported transcoder is not only parameterized
over the transcoding operation but additionally which memory is the
source and which is the destination.
* The imported core wasm functions are modeled as a new
`CoreDef::Transcoder` structure. These transcoders end up being small
Cranelift-compiled trampolines. The Cranelift-compiled trampoline will
load the actual base pointer of memory and add it to the relative
pointers passed as function arguments. This trampoline then calls a
transcoder "libcall" which enters Rust-defined functions for actual
transcoding operations.
* Each possible transcoding operation is implemented in Rust with a
unique name and a unique signature depending on the needs of the
transcoder. I've tried to document inline what each transcoder does.
This means that the `Module::translate_string` in adapter modules is by
far the largest translation method. The main reason for this is due to
the management around calling the imported transcoder functions in the
face of validating string pointer/lengths and performing the dance of
`realloc`-vs-transcode at the right time. I've tried to ensure that each
individual case in transcoding is documented well enough to understand
what's going on as well.
Additionally in this PR is a full implementation in the host for the
`latin1+utf16` encoding which means that both lifting and lowering host
strings now works with this encoding.
Currently the implementation of each transcoder function is likely far
from optimal. Where possible I've leaned on the standard library itself
and for latin1-related things I'm leaning on the `encoding_rs` crate. I
initially tried to implement everything with `encoding_rs` but was
unable to uniformly do so easily. For now I settled on trying to get a
known-correct (even in the face of endianness) implementation for all of
these transcoders. If an when performance becomes an issue it should be
possible to implement more optimized versions of each of these
transcoding operations.
Testing this commit has been somewhat difficult and my general plan,
like with the `(list T)` type, is to rely heavily on fuzzing to cover
the various cases here. In this PR though I've added a simple test that
pushes some statically known strings through all the pairs of encodings
between source and destination. I've attempted to pick "interesting"
strings that one way or another stress the various paths in each
transcoding operation to ideally get full branch coverage there.
Additionally a suite of "negative" tests have also been added to ensure
that validity of encoding is actually checked.
* Fix a temporarily commented out case
* Fix wasmtime-runtime tests
* Update deny.toml configuration
* Add `BSD-3-Clause` for the `encoding_rs` crate
* Remove some unused licenses
* Add an exemption for `encoding_rs` for now
* Split up the `translate_string` method
Move out all the closures and package up captured state into smaller
lists of arguments.
* Test out-of-bounds for zero-length strings
This addresses #4307.
For the static API we generate 100 arbitrary test cases at build time, each of
which includes 0-5 parameter types, a result type, and a WAT fragment containing
an imported function and an exported function. The exported function calls the
imported function, which is implemented by the host. At runtime, the fuzz test
selects a test case at random and feeds it zero or more sets of arbitrary
parameters and results, checking that values which flow host-to-guest and
guest-to-host make the transition unchanged.
The fuzz test for the dynamic API follows a similar pattern, the only difference
being that test cases are generated at runtime.
Signed-off-by: Joel Dice <joel.dice@fermyon.com>
* Wasmtime: Add a pointer to `VMRuntimeLimits` in component contexts
* Save exit Wasm FP and PC in component-to-host trampolines
Fixes#4535
* Add comment about why we deref the trampoline's FP
* Update some tests to use new `vmruntime_limits_*` methods
* Re-enable component model `*.wast` tests
These accidentally stopped running as part of #4556 on CI since I forgot
one more location to touch a feature gate.
* Enable logging in component tests
This is a small convenience to get log messages during testing for
components by default.
* Cranellift: remove Baldrdash support and related features.
As noted in Mozilla's bugzilla bug 1781425 [1], the SpiderMonkey team
has recently determined that their current form of integration with
Cranelift is too hard to maintain, and they have chosen to remove it
from their codebase. If and when they decide to build updated support
for Cranelift, they will adopt different approaches to several details
of the integration.
In the meantime, after discussion with the SpiderMonkey folks, they
agree that it makes sense to remove the bits of Cranelift that exist
to support the integration ("Baldrdash"), as they will not need
them. Many of these bits are difficult-to-maintain special cases that
are not actually tested in Cranelift proper: for example, the
Baldrdash integration required Cranelift to emit function bodies
without prologues/epilogues, and instead communicate very precise
information about the expected frame size and layout, then stitched
together something post-facto. This was brittle and caused a lot of
incidental complexity ("fallthrough returns", the resulting special
logic in block-ordering); this is just one example. As another
example, one particular Baldrdash ABI variant processed stack args in
reverse order, so our ABI code had to support both traversal
orders. We had a number of other Baldrdash-specific settings as well
that did various special things.
This PR removes Baldrdash ABI support, the `fallthrough_return`
instruction, and pulls some threads to remove now-unused bits as a
result of those two, with the understanding that the SpiderMonkey folks
will build new functionality as needed in the future and we can perhaps
find cleaner abstractions to make it all work.
[1] https://bugzilla.mozilla.org/show_bug.cgi?id=1781425
* Review feedback.
* Fix (?) DWARF debug tests: add `--disable-cache` to wasmtime invocations.
The debugger tests invoke `wasmtime` from within each test case under
the control of a debugger (gdb or lldb). Some of these tests started to
inexplicably fail in CI with unrelated changes, and the failures were
only inconsistently reproducible locally. It seems to be cache related:
if we disable cached compilation on the nested `wasmtime` invocations,
the tests consistently pass.
* Review feedback.
* Implement fused adapters for `(list T)` types
This commit implements one of the two remaining types for adapter
fusion, lists. This implementation is particularly tricky for a number
of reasons:
* Lists have a number of validity checks which need to be carefully
implemented. For example the byte length of the list passed to
allocation in the destination module could overflow the 32-bit index
space. Additionally lists in 32-bit memories need a check that their
final address is in-bounds in the address space.
* In the effort to go ahead and support memory64 at the lowest layers
this is where much of the magic happens. Lists are naturally always
stored in memory and shifting between 64/32-bit address spaces
is done here. This notably required plumbing an `Options` around
during flattening/size/alignment calculations due to the size/types of
lists changing depending on the memory configuration.
I've also added a small `factc` program in this commit which should
hopefully assist in exploring and debugging adapter modules. This takes
as input a component (text or binary format) and then generates an
adapter module for all component function signatures found internally.
This commit notably does not include tests for lists. I tried to figure
out a good way to add these but I felt like there were too many cases to
test and the tests would otherwise be extremely verbose. Instead I think
the best testing strategy for this commit will be through #4537 which
should be relatively extensible to testing adapters between modules in
addition to host-based lifting/lowering.
* Improve handling of lists of 0-size types
* Skip overflow checks on byte sizes for 0-size types
* Skip the copy loop entirely when src/dst are both 0
* Skip the increments of src/dst pointers if either is 0-size
* Update semantics for zero-sized lists/strings
When a list/string has a 0-byte-size the base pointer is no longer
verified to be in-bounds to match the supposedly desired adapter
semantics where no trap happens because no turn of the loop happens.
This commit goes through and updates support in the various argument
passing routines to support 0-sized flags. A bit of a degenerate case
but clarified in WebAssembly/component-model#76 as intentional.
* Unconditionally enable component-model tests
* Remove an outdated test that wasn't previously being compiled
* Fix a component model doc test
* Try to decrease memory usage in qemu