I hadn't realized before that the filetest backend for `test vcode` is
doing essentially what `compile` is doing, but for new (`MachInst`)
backends: it is just getting a disassembly and running it through
filecheck. There's no reason not to reuse `test compile` for the AArch64
tests as well.
This was motivated by the desire to have "this IR compiles successfully"
tests work on both x86 and AArch64. It seems this should work fine by
adding multiple `target` directives when a test case should be
compile-tested on multiple architectures.
Rather than outright replacing parts of our existing peephole optimizations
passes, this makes peepmatic an optional cargo feature that can be enabled. This
allows us to take a conservative approach with enabling peepmatic everywhere,
while also allowing us to get it in-tree and make it easier to collaborate on
improving it quickly.
This resolves the work started in https://github.com/bytecodealliance/cranelift/pull/1231 and https://github.com/bytecodealliance/wasmtime/pull/1436. Cranelift filetests currently have the ability to run CLIF functions with a signature like `() -> b*` and check that the result is true under the `test run` directive. This PR adds the ability to call functions with arbitrary arguments and non-boolean returns and either print the result or check against a list of expected results:
- `run` commands look like `; run: %add(2, 2) == 4` or `; run: %add(2, 2) != 5` and verify that the executed CLIF function returns the expected value
- `print` commands look like `; print: %add(2, 2)` and print the result of the function to stdout
To make this work, this PR compiles a single Cranelift `Function` into a `CompiledFunction` using a `SingleFunctionCompiler`. Because we will not know the signature of the function until runtime, we use a `Trampoline` to place the values in the appropriate location for the calling convention; this should look a lot like what @alexcrichton is doing with `VMTrampoline` in wasmtime (see 3b7cb6ee64/crates/api/src/func.rs (L510-L526), 3b7cb6ee64/crates/jit/src/compiler.rs (L260)). To avoid re-compiling `Trampoline`s for the same function signatures, `Trampoline`s are cached in the `SingleFunctionCompiler`.
This commit makes the following changes to unwind information generation in
Cranelift:
* Remove frame layout change implementation in favor of processing the prologue
and epilogue instructions when unwind information is requested. This also
means this work is no longer performed for Windows, which didn't utilize it.
It also helps simplify the prologue and epilogue generation code.
* Remove the unwind sink implementation that required each unwind information
to be represented in final form. For FDEs, this meant writing a
complete frame table per function, which wastes 20 bytes or so for each
function with duplicate CIEs. This also enables Cranelift users to collect the
unwind information and write it as a single frame table.
* For System V calling convention, the unwind information is no longer stored
in code memory (it's only a requirement for Windows ABI to do so). This allows
for more compact code memory for modules with a lot of functions.
* Deletes some duplicate code relating to frame table generation. Users can
now simply use gimli to create a frame table from each function's unwind
information.
Fixes#1181.
This patch adds support for filetests with the `vcode` type. This allows
test cases to feed CLIF into the new backend, produce VCode output with
machine instructions, and then perform matching against the
pretty-printed text representation of the VCode.
Tests for the new ARM64 backend using this infrastructure will come in a
followup patch.
* Implement emitting Windows unwind information for fastcall functions.
This commit implements emitting Windows unwind information for x64 fastcall
calling convention functions.
The unwind information can be used to construct a Windows function table at
runtime for JIT'd code, enabling stack walking and unwinding by the operating
system.
* Address code review feedback.
This commit addresses code review feedback:
* Remove unnecessary unsafe code.
* Emit the unwind information always as little endian.
* Fix comments.
A dependency from cranelift-codegen to the byteorder crate was added.
The byteorder crate is a no-dependencies crate with a reasonable
abstraction for writing binary data for a specific endianness.
* Address code review feedback.
* Disable default features for the `byteorder` crate.
* Add a comment regarding the Windows ABI unwind code numerical values.
* Panic if we encounter a Windows function with a prologue greater than 256
bytes in size.
* Add ability to run CLIF IR using `clif-util run [-v] {file}` and add `test run` to cranelift-filetests to allow executing CLIF
This re-factors the compile/execute parts to a FunctionRunner that is shared between cranelift-filetests and clif-util. CLIF can be now be run using `clif-util run` as well as during `clif-util test` for files with a `test run` header. As before, only functions suffixed with a `run` comment are executed. The `run: fn(...) == ...` expression syntax is left for a subsequent change.
-Add resumable_trap, safepoint, isnull, and null instructions
-Add Stackmap struct and StackmapSink trait
Co-authored-by: Mir Ahmed <mirahmed753@gmail.com>
Co-authored-by: Dan Gohman <sunfish@mozilla.com>