This commit adds support for generating stackmaps at safepoints to the
new backend framework and to the AArch64 backend in particular. It has
been tested to work with SpiderMonkey.
This commit adds the inital support to allow reftypes to flow through
the program when targetting aarch64. It also adds a fix to the
`ModuleTranslationState` needed to send R32/R64 types over from the
SpiderMonkey embedding.
This commit does not include any support for safepoints in aarch64
or the `MachInst` infrastructure; that is in the next commit.
This commit also makes a drive-by improvement to `Bint`, avoiding an
unneeded zero-extension op when the extended value comes directly from a
conditional-set (which produces a full-width 0 or 1).
The main issue with the InstSize enum was that it was used both for
GPR and SIMD & FP operands, even though machine instructions do not
mix them in general (as in a destination register is either a GPR
or not). As a result it had methods such as sf_bit() that made
sense only for one type of operand.
Another issue was that the enum name was not reflecting its purpose
accurately - it was meant to represent an instruction operand size,
not an instruction size, which is fixed in A64 (always 4 bytes).
Now the enum is split into one for GPR operands and another for
scalar SIMD & FP operands.
Copyright (c) 2020, Arm Limited.
* Switch CI back to nightly channel
I think all upstream issues are now fixed so we should be good to switch
back to nightly from our previously pinned version.
* Fix doc warnings
The ARM book says that the immr field should contain (-count % 64); the
existing code was approximating this with (64 - count), which is not
correct for a zero count.
- put the division in the synthetic instruction as well,
- put the branch table check in the inst's emission code,
- replace OneWayCondJmp by TrapIf vcode instruction,
- add comments describing code generated by the synthetic instructions
In discussions with @bnjbvr, it came up that generating `OneWayCondBr`s
with explicit, hardcoded PC-offsets as part of lowered instruction
sequences is actually unsafe, because the register allocator *might*
insert a spill or reload into the middle of our sequence. We were
careful about this in some cases but somehow missed that it was a
general restriction. Conceptually, all inter-instruction references
should be via labels at the VCode level; explicit offsets are only ever
known at emission time, and resolved by the `MachBuffer`.
To allow for conditional trap checks without modifying the CFG (as seen
by regalloc) during lowering, this PR instead adds a `TrapIf`
pseudo-instruction that conditionally skips a single embedded trap
instruction. It lowers to the same `condbr label ; trap ; label: ...`
sequence, but without the hardcoded branch-target offset in the lowering
code.
The failure to mask the amount triggered a panic due to a subtraction
overflow check; see
https://bugzilla.mozilla.org/show_bug.cgi?id=1649432. Attempting to
shift by an out-of-range amount should be defined to shift by an amount
mod the operand size (i.e., masked to 5 bits for 32-bit shifts, or 6
bits for 64-bit shifts).
This PR adds a conditional move following a heap bounds check through
which the address to be accessed flows. This conditional move ensures
that even if the branch is mispredicted (access is actually out of
bounds, but speculation goes down in-bounds path), the acually accessed
address is zero (a NULL pointer) rather than the out-of-bounds address.
The mitigation is controlled by a flag that is off by default, but can
be set by the embedding. Note that in order to turn it on by default,
we would need to add conditional-move support to the current x86
backend; this does not appear to be present. Once the deprecated
backend is removed in favor of the new backend, IMHO we should turn
this flag on by default.
Note that the mitigation is unneccessary when we use the "huge heap"
technique on 64-bit systems, in which we allocate a range of virtual
address space such that no 32-bit offset can reach other data. Hence,
this only affects small-heap configurations.
Also add configuration to CI to fail doc generation if any links are
broken. Unfortunately we can't blanket deny all warnings in rustdoc
since some are unconditional warnings, but for now this is hopefully
good enough.
Closes#1947
From discussion with Julian and Ben, this PR makes a few documentation-
and naming-level changes (no functionality change):
- Document that the `LowerCtx`-provided output register can be used as a
scratch register during the lowered instruction sequence before
placing the final result in it.
- Rename `input_to_*` helpers in the AArch64 backend to
`put_input_in_*`, emphasizing that these are side-effecting helpers
that potentially generate code (e.g., sign/zero-extensions) to ensure
an input value is in a register.
This is useful to have to allow resumable_trap to happen in loop
headers, for instance. This is the correct way to implement interrupt
checks in Spidermonkey, which are effectively resumable traps. Previous
implementation was using traps, which is wrong, since traps semantically
can't be resumed after.
When a load/store instruction needs an address of the form `v0 +
uextend(v1)` or `v0 + sextend(v1)` (or the commuted forms thereof), we
currently generate a separate zero/sign-extend operation and then use a
plain `[rA, rB]` addressing mode. This patch extends `lower_address()`
to look at both addends of an address if it has two addends and a zero
offset, recognize extension operations, and incorporate them directly
into a `[rA, rB, UXTW]` or `[rA, rB, SXTW]` form. This should improve
our performence on WebAssembly workloads, at least, because we often see
a 64-bit linear memory base indexed by a 32-bit (Wasm) pointer value.