This contains encoding details for a stack reference: The base register
and offset to use in the specific instruction encoding.
Generate StackRef objects called in_stk0 etc for the binemit recipe
code. All binemit recipes need to compute base pointer offsets for stack
references, so have the automatically generated code do it.
Register locations can change throughout an EBB. Make sure the
emit_inst() function considers this when encoding instructions and
update the register diversion tracker.
Generate code to:
- Unwrap the instruction and generate an error if the instruction format
doesn't match the recipe.
- Look up the value locations of register and stack arguments.
The recipe_* functions in the ISA binemit modules now take these
unwrapped items as arguments.
Also add an optional `emit` argument to the EncRecipe constructor which
makes it possible to provide inline Rust code snippets for code
emission. This requires a lot less boilerplate than recipe_* functions.
Add a Stack() class for specifying operand constraints for values on the
stack.
Add encoding recipes for RISC-V spill and fill instructions. Don't
implement the encoding recipe functions yet since we don't have the
stack slot layout yet.
Not all br_icmp opcodes are present in the ISA. The missing ones can be
reached by commuting operands.
Don't attempt to encode EBB offsets yet. For now just emit an EBB
relocation for the branch instruction.
Use the meta language encoding recipes to generate an emit_inst()
function for each ISA. The generated calls into recipe_*() functions
that must be implemented by hand.
Implement recipe_*() functions for the RISC-V recipes.
Add the TargetIsa::emit_inst() entry point which emits an instruction to
a CodeSink trait object.