The new PrimaryMap replaces the primary EntityMap and the PrimaryEntityData
marker trait which was causing some confusion. We now have a clear
division between the two types of maps:
- PrimaryMap is used to assign entity numbers to the primary data for an
entity.
- EntityMap is a secondary mapping adding additional info.
The split also means that the secondary EntityMap can now behave as if
all keys have a default value. This means that we can get rid of the
annoying ensure() and get_or_default() methods ther were used everywhere
instead of indexing. Just use normal indexing now; non-existent keys
will return the default value.
Register locations can change throughout an EBB. Make sure the
emit_inst() function considers this when encoding instructions and
update the register diversion tracker.
This function will emit the binary machine code into contiguous raw
memory while sending relocations to a RelocSink.
Add a MemoryCodeSink for generating machine code directly into memory
efficiently. Allow the TargetIsa to provide emit_function
implementations that are specialized to the MemoryCodeSink type to avoid
needless small virtual callbacks to put1() et etc.
This is the main entry point to the code generator. It returns the
computed size of the functions code.
Also add a 'test compile' command which runs the whole code generation
pipeline.
* LICM pass
* Uses loop analysis to detect loop tree
* For each loop (starting with the inner ones), create a pre-header and move there loop-invariant instructions
* An instruction is loop invariant if it does not use as argument a value defined earlier in the loop
* File tests to check LICM's correctness
* Optimized pre-header creation
If the loop already has a natural pre-header, we use it instead of creating a new one.
The natural pre-header of a loop is the only predecessor of the header it doesn't dominate.
* Skeleton simple_gvn pass.
* Basic testing infrastructure for simple-gvn.
* Add can_load and can_store flags to instructions.
* Move the replace_values function into the DataFlowGraph.
* Make InstructionData derive from Hash, PartialEq, and Eq.
* Make EntityList's hash and eq functions panic.
* Change Ieee32 and Ieee64 to store u32 and u64, respectively.
The liveness verifier will check that the live ranges are consistent
with the function. It runs as part of the register allocation pipeline
when enable_verifier is set.
The initial implementation checks the live ranges, but not the
ISA-specific constraints and affinities.
The test drivers can stop calling comp_ctx.verify because legalize() and
regalloc() do it themselves now.
This also makes it possible for those two passes to return other
CtonError codes in the future, not just verifier errors.
Soon, InstructionData won't have sufficient information to compute this.
Give TargetIsa::encode() an explicit ctrl_typevar argument. This
function does not require the instruction to be inserted in the DFG
tables.
Compute exact EBB header offsets and check that branches are in range.
Not implemented yet: Relax branches that are not in range.
Invoke the relax_branches() pass from the 'test binemit' file tests so
they can verify the proper encoding of branch instructions too.
Not all br_icmp opcodes are present in the ISA. The missing ones can be
reached by commuting operands.
Don't attempt to encode EBB offsets yet. For now just emit an EBB
relocation for the branch instruction.
Run the verify_contexti() function after invoking the legalize() and
regalloc() context functions. This will help catch bad code produced by
these passes.
If an instruction doesn't have an associated encoding, use the standard
TargetIsa hook to encode it.
The test still fails if an instruction can't be encoded. There is no
legalization step.
Legalizing some instructions may require modifications to the control
flow graph, and some operations need to use the CFG analysis.
The CFG reference is threaded through all the legalization functions to
reach the generated expansion functions as well as the legalizer::split
module where it will be used first.
When the CRETONNE_DBG environment variable is set, send debug messages
to a file named cretonne.dbg.*.
The trace facility is only enabled when debug assertions are on.
The Branch format also stores its fixed argument in the value list. This
requires the value pool to be passed to a few more functions.
Note that this actually makes the Branch and Jump variants of
InstructionData identical. The instruction format hashing does not yet
understand that all value operands are stored in the value list. We'll
fix that in a later patch.
Also convert IndirectCall, noting that Call and IndirectCall remain
separate instruction formats because they have different immediate
fields.
Add a Function::display() method which can include ISA-specific
information when printing the function.
If a test file has a unique ISA, use that in the `test cat`
implementation.
Move the flow graph computation into a compute method which can be
called with multiple functions.
This allows us to reuse the ControlFlowGraph memory and keep an instance
in the Context.
Also rework the algorithm to be more robust against unreachable blocks.
- Add an is_reachable(ebb) method.
- Change idom(ebb) to just return an instruction.
- Make idom() return None for the entry block as well as unreachable
blocks.
Include the test file preamble comments when building a filecheck
instance for every function in the file.
This makes it possible to define common regex variables in the preamble
and use these definitions for all the functions.
Give these crates each a more standard directory layout with sources in
a 'src' sub-sirectory and Cargo.toml in the top lib/foo directory.
Add license and description fields to each.
The build script for the cretonne crate now lives in
'lib/cretonne/build.rs' separating it from the normal library sources
under 'lib/cretonne/src'.
The 'lib/cretonne' directory will be the new root of a stand-alone
cretonne crate containg both Python and Rust sources.
This is in preparation for publishing crates on crates.io.
The Builder keeps track of a position in the layout and inserts new
instructions there.
Add insert_ebb() and ebb() methods to Builder.
Use Builder in the cfg tests.