The legalize_signature() function will return ArgumentLoc::Reg arguments
that contain a register unit. However, the register also needs to be
able to associate a register class with the argument values to fully
track the used registers.
When values are defined by instructions, the register class is part for
the operand constraints for the instruction. For values defined on ABI
boundaries like function arguments and return values from a call, the
register class is provided by the new regclass_for_abi_type() function.
Provide implementations of this function in abi modules of all the
targets, even those that don't have a legalize_signature()
implementation yet.
Since we're adding abi modules to all targets, move the
legalize_signature() stubs in there and make the function mandatory in
TargetIsa. All targets will eventually need this function.
These special-purpose arguments and return values are only relevant for
the function being compiled, so add a `current` flag to
legalize_signature().
- Add the necessary argument values to the entry block to represent
the special-purpose arguments.
- Propagate the link and sret arguments to return instructions if the
legalized signature asks for it.
All values are now references into the value table, so drop the
distinction between direct and table values. Direct values don't exist
any more.
Also remove the parser support for the 'vxNN' syntax. Only 'vNN' values
can be parsed now.
Soon, InstructionData won't have sufficient information to compute this.
Give TargetIsa::encode() an explicit ctrl_typevar argument. This
function does not require the instruction to be inserted in the DFG
tables.
The tables returned by recipe_names() and recipe_constraints() are now
collected into an EncInfo struct that is available from
TargetIsa::encoding_info(). This is equivalent to the register bank
tables available fro TargetIsa::register_info().
This cleans of the TargetIsa interface and makes it easier to add
encoding-related information.
Not all br_icmp opcodes are present in the ISA. The missing ones can be
reached by commuting operands.
Don't attempt to encode EBB offsets yet. For now just emit an EBB
relocation for the branch instruction.
Use the meta language encoding recipes to generate an emit_inst()
function for each ISA. The generated calls into recipe_*() functions
that must be implemented by hand.
Implement recipe_*() functions for the RISC-V recipes.
Add the TargetIsa::emit_inst() entry point which emits an instruction to
a CodeSink trait object.
This entry point will be used for controlling ABI conventions when
legalizing.
Provide an empty implementation for RISC-V and let the other ISAs crash
in legalization.
This is just the scaffolding. We still need to:
- Rewrite the entry block arguments to match the legalized signature.
- Rewrite call and return instructions.
- Implement the legalize_signature() function for all ISAs.
- Add shared generic types to help with the legalize_signature()
functions.
Some polymorphic instructions don't return the controlling type
variable, so it has to be computed from the designated operand instead.
- Add a requires_typevar_operand() method to the operand constraints
which indicates that.
- Add a ctrl_typevar(dfg) method to InstructionData which computes the
controlling type variable correctly, and returns VOID for monomorphic
instructions.
- Use ctrl_typevar(dfg) to drive the level-1 encoding table lookups.
Every encoding recipe must specify register constraints on input and
output values.
Generate recipe constraint tables along with the other encoding tables.
Give these crates each a more standard directory layout with sources in
a 'src' sub-sirectory and Cargo.toml in the top lib/foo directory.
Add license and description fields to each.
The build script for the cretonne crate now lives in
'lib/cretonne/build.rs' separating it from the normal library sources
under 'lib/cretonne/src'.