* Store the `ValRaw` type in little-endian format
This commit changes the internal representation of the `ValRaw` type to
an unconditionally little-endian format instead of its current
native-endian format. The documentation and various accessors here have
been updated as well as the associated trampolines that read `ValRaw`
to always work with little-endian values, converting to the host
endianness as necessary.
The motivation for this change originally comes from the implementation
of the component model that I'm working on. One aspect of the component
model's canonical ABI is how variants are passed to functions as
immediate arguments. For example for a component model function:
```
foo: function(x: expected<i32, f64>)
```
This translates to a core wasm function:
```wasm
(module
(func (export "foo") (param i32 i64)
;; ...
)
)
```
The first `i32` parameter to the core wasm function is the discriminant
of whether the result is an "ok" or an "err". The second `i64`, however,
is the "join" operation on the `i32` and `f64` payloads. Essentially
these two types are unioned into one type to get passed into the function.
Currently in the implementation of the component model my plan is to
construct a `*mut [ValRaw]` to pass through to WebAssembly, always
invoking component exports through host trampolines. This means that the
implementation for `Result<T, E>` needs to do the correct "join"
operation here when encoding a particular case into the corresponding
`ValRaw`.
I personally found this particularly tricky to do structurally. The
solution that I settled on with fitzgen was that if `ValRaw` was always
stored in a little endian format then we could employ a trick where when
encoding a variant we first set all the `ValRaw` slots to zero, then the
associated case we have is encoding. Afterwards the `ValRaw` values are
already encoded into the correct format as if they'd been "join"ed.
For example if we were to encode `Ok(1i32)` then this would produce
`ValRaw { i32: 1 }`, which memory-wise is equivalent to `ValRaw { i64: 1 }`
if the other bytes in the `ValRaw` are guaranteed to be zero. Similarly
storing `ValRaw { f64 }` is equivalent to the storage required for
`ValRaw { i64 }` here in the join operation.
Note, though, that this equivalence relies on everything being
little-endian. Otherwise the in-memory representations of `ValRaw { i32: 1 }`
and `ValRaw { i64: 1 }` are different.
That motivation is what leads to this change. It's expected that this is
a low-to-zero cost change in the sense that little-endian platforms will
see no change and big-endian platforms are already required to
efficiently byte-swap loads/stores as WebAssembly requires that.
Additionally the `ValRaw` type is an esoteric niche use case primarily
used for accelerating the C API right now, so it's expected that not
many users will have to update for this change.
* Track down some more endianness conversions
* Add `*_unchecked` variants of `Func` APIs for the C API
This commit is what is hopefully going to be my last installment within
the saga of optimizing function calls in/out of WebAssembly modules in
the C API. This is yet another alternative approach to #3345 (sorry) but
also contains everything necessary to make the C API fast. As in #3345
the general idea is just moving checks out of the call path in the same
style of `TypedFunc`.
This new strategy takes inspiration from previously learned attempts
effectively "just" exposes how we previously passed `*mut u128` through
trampolines for arguments/results. This storage format is formalized
through a new `ValRaw` union that is exposed from the `wasmtime` crate.
By doing this it made it relatively easy to expose two new APIs:
* `Func::new_unchecked`
* `Func::call_unchecked`
These are the same as their checked equivalents except that they're
`unsafe` and they work with `*mut ValRaw` rather than safe slices of
`Val`. Working with these eschews type checks and such and requires
callers/embedders to do the right thing.
These two new functions are then exposed via the C API with new
functions, enabling C to have a fast-path of calling/defining functions.
This fast path is akin to `Func::wrap` in Rust, although that API can't
be built in C due to C not having generics in the same way that Rust
has.
For some benchmarks, the benchmarks here are:
* `nop` - Call a wasm function from the host that does nothing and
returns nothing.
* `i64` - Call a wasm function from the host, the wasm function calls a
host function, and the host function returns an `i64` all the way out to
the original caller.
* `many` - Call a wasm function from the host, the wasm calls
host function with 5 `i32` parameters, and then an `i64` result is
returned back to the original host
* `i64` host - just the overhead of the wasm calling the host, so the
wasm calls the host function in a loop.
* `many` host - same as `i64` host, but calling the `many` host function.
All numbers in this table are in nanoseconds, and this is just one
measurement as well so there's bound to be some variation in the precise
numbers here.
| Name | Rust | C (before) | C (after) |
|-----------|------|------------|-----------|
| nop | 19 | 112 | 25 |
| i64 | 22 | 207 | 32 |
| many | 27 | 189 | 34 |
| i64 host | 2 | 38 | 5 |
| many host | 7 | 75 | 8 |
The main conclusion here is that the C API is significantly faster than
before when using the `*_unchecked` variants of APIs. The Rust
implementation is still the ceiling (or floor I guess?) for performance
The main reason that C is slower than Rust is that a little bit more has
to travel through memory where on the Rust side of things we can
monomorphize and inline a bit more to get rid of that. Overall though
the costs are way way down from where they were originally and I don't
plan on doing a whole lot more myself at this time. There's various
things we theoretically could do I've considered but implementation-wise
I think they'll be much more weighty.
* Tweak `wasmtime_externref_t` API comments
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.