Commit Graph

132 Commits

Author SHA1 Message Date
Alex Crichton
2fde25311e x64: Refactor and fill out some gpr-vs-xmm bits (#6058)
* x64: Add instruction helpers for `mov{d,q}`

These will soon grow AVX-equivalents so move them to instruction helpers
to have clauses for AVX in the future.

* x64: Don't auto-convert between RegMemImm and XmmMemImm

The previous conversion, `mov_rmi_to_xmm`, would move from GPR registers
to XMM registers which isn't what many of the other `convert` statements
between these newtypes do. This seemed like a possible footgun so I've
removed the auto-conversion and added an explicit helper to go from a
`u32` to an `XmmMemImm`.

* x64: Add AVX encodings of some more GPR-related insns

This commit adds some more support for AVX instructions where GPRs are
in use mixed in with XMM registers. This required a few more variants of
`Inst` to handle the new instructions.

* Fix vpmovmskb encoding

* Fix xmm-to-gpr encoding of vmovd/vmovq

* Fix typo

* Fix rebase conflict

* Fix rebase conflict with tests
2023-03-22 14:58:09 +00:00
Alex Crichton
d76f7ee52e x64: Improve codegen for splats (#6025)
This commit goes through the lowerings for the CLIF `splat` instruction
and improves the support for each operator. Many of these lowerings are
mirrored from v8/SpiderMonkey and there are a number of improvements:

* AVX2 `v{p,}broadcast*` instructions are added and used when available.
* Float-based splats are much simpler and always a single-instruction
* Integer-based splats don't insert into an uninit xmm value and instead
  start out with a `movd` to move into an `xmm` register. This
  thoeretically breaks dependencies with prior instructions since `movd`
  creates a fresh new value in the destination register.
* Loads are now sunk into all of the instructions. A new extractor,
  `sinkable_load_exact`, was added to sink the i8/i16 loads.
2023-03-15 21:33:56 +00:00
Alex Crichton
6ed90f86c8 x64: Add support for the pblendw instruction (#6023)
This commit adds another case for `shuffle` lowering to the x64 backend
for the `{,v}pblendw` instruction. This instruction selects 16-bit
values from either of the inputs corresponding to an immediate 8-bit-mask where
each bit selects the corresponding lane from the inputs.
2023-03-15 17:20:43 +00:00
Alex Crichton
5c1b468648 x64: Migrate {s,u}{div,rem} to ISLE (#6008)
* x64: Add precise-output tests for div traps

This adds a suite of `*.clif` files which are intended to test the
`avoid_div_traps=true` compilation of the `{s,u}{div,rem}` instructions.

* x64: Remove conditional regalloc in `Div` instruction

Move the 8-bit `Div` logic into a dedicated `Div8` instruction to avoid
having conditionally-used registers with respect to regalloc.

* x64: Migrate non-trapping, `udiv`/`urem` to ISLE

* x64: Port checked `udiv` to ISLE

* x64: Migrate urem entirely to ISLE

* x64: Use `test` instead of `cmp` to compare-to-zero

* x64: Port `sdiv` lowering to ISLE

* x64: Port `srem` lowering to ISLE

* Tidy up regalloc behavior and fix tests

* Update docs and winch

* Review comments

* Reword again

* More refactoring test fixes

* More test fixes
2023-03-14 01:44:06 +00:00
Alex Crichton
6ecdc2482e x64: Improve memory support in {insert,extract}lane (#5982)
* x64: Improve memory support in `{insert,extract}lane`

This commit improves adds support to Cranelift to emit `pextr{b,w,d,q}`
with a memory destination, merging a store-of-extract operation into one
instruction. Additionally AVX support is added for the `pextr*`
instructions.

I've additionally tried to ensure that codegen tests and runtests exist
for all forms of these instructions too.

* Add missing commas

* Fix tests
2023-03-13 19:30:44 +00:00
Alex Crichton
83f21e784a x64: Add more support for more AVX instructions (#5931)
* x64: Add a smattering of lowerings for `shuffle` specializations (#5930)

* x64: Add lowerings for `punpck{h,l}wd`

Add some special cases for `shuffle` for more specialized x86
instructions.

* x64: Add `shuffle` lowerings for `pshufd`

This commit adds special-cased lowerings for the x64 `shuffle`
instruction when the `pshufd` instruction alone is necessary. This is
possible when the shuffle immediate permutes 32-bit values within one of
the vector inputs of the `shuffle` instruction, but not both.

* x64: Add shuffle lowerings for `punpck{h,l}{q,}dq`

This adds specific permutations for some x86 instructions which
specifically interleave high/low bytes for 32 and 64-bit values. This
corresponds to the preexisting specific lowerings for interleaving 8 and
16-bit values.

* x64: Add `shuffle` lowerings for `shufps`

This commit adds targeted lowerings for the `shuffle` instruction that
match the pattern that `shufps` supports. The `shufps` instruction
selects two elements from the first vector and two elements from the
second vector which means while it's not generally applicable it should
still be more useful than the catch-all lowering of `shuffle`.

* x64: Add shuffle support for `pshuf{l,h}w`

This commit adds special lowering cases for these instructions which
permute 16-bit values within a 128-bit value either within the upper or
lower half of the 128-bit value.

* x64: Specialize `shuffle` with an all-zeros immediate

Instead of loading the all-zeros immediate from a rip-relative address
at the end of the function instead generate a zero with a `pxor`
instruction and then use `pshufb` to do the broadcast.

* Review comments

* x64: Add an AVX encoding for the `pshufd` instruction

This will benefit from lack of need for alignment vs the `pshufd`
instruction if working with a memory operand and additionally, as I've
just learned, this reduces dependencies between instructions because the
`v*` instructions zero the upper bits as opposed to preserving them
which could accidentally create false dependencies in the CPU between
instructions.

* x64: Add more support for AVX loads/stores

This commit adds VEX-encoded versions of instructions such as
`mov{ss,sd,upd,ups,dqu}` for load and store operations. This also
changes some signatures so the `load` helpers specifically take a
`SyntheticAmode` argument which ended up doing a small refactoring of
the `*_regmove` variant used for `insertlane 0` into f64x2 vectors.

* x64: Enable using AVX instructions for zero regs

This commit refactors the internal ISLE helpers for creating zero'd
xmm registers to leverage the AVX support for all other instructions.
This moves away from picking opcodes to instead picking instructions
with a bit of reorganization.

* x64: Remove `XmmConstOp` as an instruction

All existing users can be replaced with usage of the `xmm_uninit_value`
helper instruction so there's no longer any need for these otherwise
constant operations. This additionally reduces manual usage of opcodes
in favor of instruction helpers.

* Review comments

* Update test expectations
2023-03-09 23:57:42 +00:00
Alex Crichton
1c3a1bda6c x64: Add a smattering of lowerings for shuffle specializations (#5930)
* x64: Add lowerings for `punpck{h,l}wd`

Add some special cases for `shuffle` for more specialized x86
instructions.

* x64: Add `shuffle` lowerings for `pshufd`

This commit adds special-cased lowerings for the x64 `shuffle`
instruction when the `pshufd` instruction alone is necessary. This is
possible when the shuffle immediate permutes 32-bit values within one of
the vector inputs of the `shuffle` instruction, but not both.

* x64: Add shuffle lowerings for `punpck{h,l}{q,}dq`

This adds specific permutations for some x86 instructions which
specifically interleave high/low bytes for 32 and 64-bit values. This
corresponds to the preexisting specific lowerings for interleaving 8 and
16-bit values.

* x64: Add `shuffle` lowerings for `shufps`

This commit adds targeted lowerings for the `shuffle` instruction that
match the pattern that `shufps` supports. The `shufps` instruction
selects two elements from the first vector and two elements from the
second vector which means while it's not generally applicable it should
still be more useful than the catch-all lowering of `shuffle`.

* x64: Add shuffle support for `pshuf{l,h}w`

This commit adds special lowering cases for these instructions which
permute 16-bit values within a 128-bit value either within the upper or
lower half of the 128-bit value.

* x64: Specialize `shuffle` with an all-zeros immediate

Instead of loading the all-zeros immediate from a rip-relative address
at the end of the function instead generate a zero with a `pxor`
instruction and then use `pshufb` to do the broadcast.

* Review comments
2023-03-09 22:58:19 +00:00
Alex Crichton
e0ef0b7c72 x64: Add support for phadd{w,d} instructions (#5896)
This commit adds support for the bare lowering of the `iadd_pairwise`
instruction with `i16x8` and `i32x4` types on the x64 backend. These
lowerings are achieved with the `phaddw` and `phaddd` instructions,
respectively. Additionally AVX encodings of these instructions are added
too.

The motivation for these new lowerings comes from the relaxed-simd
proposal which will use them in the deterministic lowering of some
instructions on the x64 backend.
2023-02-28 23:35:53 +00:00
Alex Crichton
3fc3bc9ec8 x64: Fill out more AVX instructions (#5849)
* x64: Fill out more AVX instructions

This commit fills out more AVX instructions for SSE counterparts
currently used. Many of these instructions do not benefit from the
3-operand form that AVX uses but instead benefit from being able to use
`XmmMem` instead of `XmmMemAligned` which may be able to avoid some
extra temporary registers in some cases.

* Review comments
2023-02-23 22:31:31 +00:00
Alex Crichton
bd3dcd313d x64: Add more fma instruction lowerings (#5846)
The relaxed-simd proposal for WebAssembly adds a fused-multiply-add
operation for `v128` types so I was poking around at Cranelift's
existing support for its `fma` instruction. I was also poking around at
the x86_64 ISA's offerings for the FMA operation and ended up with this
PR that improves the lowering of the `fma` instruction on the x64
backend in a number of ways:

* A libcall-based fallback is now provided for `f32x4` and `f64x2` types
  in preparation for eventual support of the relaxed-simd proposal.
  These encodings are horribly slow, but it's expected that if FMA
  semantics must be guaranteed then it's the best that can be done
  without the `fma` feature. Otherwise it'll be up to producers (e.g.
  Wasmtime embedders) whether wasm-level FMA operations should be FMA or
  multiply-then-add.

* In addition to the existing `vfmadd213*` instructions opcodes were
  added for `vfmadd132*`. The `132` variant is selected based on which
  argument can have a sinkable load.

* Any argument in the `fma` CLIF instruction can now have a
  `sinkable_load` and it'll generate a single FMA instruction.

* All `vfnmadd*` opcodes were added as well. These are pattern-matched
  where one of the arguments to the CLIF instruction is an `fneg`. I
  opted to not add a new CLIF instruction here since it seemed like
  pattern matching was easy enough but I'm also not intimately familiar
  with the semantics here so if that's the preferred approach I can do
  that too.
2023-02-21 20:51:22 +00:00
Alex Crichton
d82ebcc102 x64: Enable load-coalescing for SSE/AVX instructions (#5841)
* x64: Enable load-coalescing for SSE/AVX instructions

This commit unlocks the ability to fold loads into operands of SSE and
AVX instructions. This is beneficial for both function size when it
happens in addition to being able to reduce register pressure.
Previously this was not done because most SSE instructions require
memory to be aligned. AVX instructions, however, do not have alignment
requirements.

The solution implemented here is one recommended by Chris which is to
add a new `XmmMemAligned` newtype wrapper around `XmmMem`. All SSE
instructions are now annotated as requiring an `XmmMemAligned` operand
except for a new new instruction styles used specifically for
instructions that don't require alignment (e.g.  `movdqu`, `*sd`, and
`*ss` instructions). All existing instruction helpers continue to take
`XmmMem`, however. This way if an AVX lowering is chosen it can be used
as-is. If an SSE lowering is chosen, however, then an automatic
conversion from `XmmMem` to `XmmMemAligned` kicks in. This automatic
conversion only fails for unaligned addresses in which case a load
instruction is emitted and the operand becomes a temporary register
instead. A number of prior `Xmm` arguments have now been converted to
`XmmMem` as well.

One change from this commit is that loading an unaligned operand for an
SSE instruction previously would use the "correct type" of load, e.g.
`movups` for f32x4 or `movup` for f64x2, but now the loading happens in
a context without type information so the `movdqu` instruction is
generated. According to [this stack overflow question][question] it
looks like modern processors won't penalize this "wrong" choice of type
when the operand is then used for f32 or f64 oriented instructions.

Finally this commit improves some reuse of logic in the `put_in_*_mem*`
helper to share code with `sinkable_load` and avoid duplication. With
this in place some various ISLE rules have been updated as well.

In the tests it can be seen that AVX-instructions are now automatically
load-coalesced and use memory operands in a few cases.

[question]: https://stackoverflow.com/questions/40854819/is-there-any-situation-where-using-movdqu-and-movupd-is-better-than-movups

* Fix tests

* Fix move-and-extend to be unaligned

These don't have alignment requirements like other xmm instructions as
well. Additionally add some ISA tests to ensure that their output is
tested.

* Review comments
2023-02-21 19:10:19 +00:00
Alex Crichton
c65de1f1b1 x64: Remove conditional SseOpcode::uses_src1 (#5842)
This is a follow-up to comments in #5795 to remove some cruft in the x64
instruction model to ensure that the shape of an `Inst` reflects what's
going to happen in regalloc and encoding. This accessor was used to
handle `round*`, `pextr*`, and `pshufb` instructions. The `round*` ones
had already moved to the appropriate `XmmUnary*` variant and `pshufb`
was additionally moved over to that variant as well.

The `pextr*` instructions got a new `Inst` variant and additionally had
their constructors slightly modified to no longer require the type as
input. The encoding for these instructions now automatically handles the
various type-related operands through a new `SseOpcode::Pextrq` operand
to represent 64-bit movements.
2023-02-21 18:17:07 +00:00
Alex Crichton
c26a65a854 x64: Add most remaining AVX lowerings (#5819)
* x64: Add most remaining AVX lowerings

This commit goes through `inst.isle` and adds a corresponding AVX
lowering for most SSE lowerings. I opted to skip instructions where the
SSE lowering didn't read/modify a register, such as `roundps`. I think
that AVX will benefit these instructions when there's load-merging since
AVX doesn't require alignment, but I've deferred that work to a future
PR.

Otherwise though in this PR I think all (or almost all) of the 3-operand
forms of AVX instructions are supported with their SSE counterparts.
This should ideally improve codegen slightly by removing register
pressure and the need for `movdqa` between registers. I've attempted to
ensure that there's at least one codegen test for all the new instructions.

As a side note, the recent capstone integration into `precise-output`
tests helped me catch a number of encoding bugs much earlier than
otherwise, so I've found that incredibly useful in tests!

* Move `vpinsr*` instructions to their own variant

Use true `XmmMem` and `GprMem` types in the instruction as well to get
more type-level safety for what goes where.

* Remove `Inst::produces_const` accessor

Instead of conditionally defining regalloc and various other operations
instead add dedicated `MInst` variants for operations which are intended
to produce a constant to have more clear interactions with regalloc and
printing and such.

* Fix tests

* Register traps in `MachBuffer` for load-folding ops

This adds a missing `add_trap` to encoding of VEX instructions with
memory operands to ensure that if they cause a segfault that there's
appropriate metadata for Wasmtime to understand that the instruction
could in fact trap. This fixes a fuzz test case found locally where v8
trapped and Wasmtime didn't catch the signal and crashed the fuzzer.
2023-02-20 15:11:52 +00:00
Alex Crichton
453330b2db x64: Add rudimentary support for some AVX instructions (#5795)
* x64: Add rudimentary support for some AVX instructions

I was poking around Spidermonkey's wasm backend and saw that the various
assembler functions used are all `v*`-prefixed which look like they're
intended for use with AVX instructions. I looked at Cranelift and it
currently doesn't have support for many AVX-based instructions, so I
figured I'd take a crack at it!

The support added here is a bit of a mishmash when viewed alone, but my
general goal was to take a single instruction from the SIMD proposal for
WebAssembly and migrate all of its component instructions to AVX. I, by
random chance, picked a pretty complicated instruction of `f32x4.min`.
This wasm instruction is implemented on x64 with 4 unique SSE
instructions and ended up being a pretty good candidate.

Further digging about AVX-vs-SSE shows that there should be two major
benefits to using AVX over SSE:

* Primarily AVX instructions largely use a three-operand form where two
  input registers are operated with and an output register is also
  specified. This is in contrast to SSE's predominant
  one-register-is-input-but-also-output pattern. This should help free
  up the register allocator a bit and additionally remove the need for
  movement between registers.

* As #4767 notes the memory-based operations of VEX-encoded instructions
  (aka AVX instructions) do not have strict alignment requirements which
  means we would be able to sink loads and stores into individual
  instructions instead of having separate instructions.

So I set out on my journey to implement the instructions used by
`f32x4.min`. The first few were fairly easy. The machinst backends are
already of the shape "take these inputs and compute the output" where
the x86 requirement of a register being both input and output is
postprocessed in. This means that the `inst.isle` creation helpers for
SSE instructions were already of the correct form to use AVX. I chose to
add new `rule` branches for the instruction creation helpers, for
example `x64_andnps`. The new `rule` conditionally only runs if AVX is
enabled and emits an AVX instruction instead of an SSE instruction for
achieving the same goal. This means that no lowerings of clif
instructions were modified, instead just new instructions are being
generated.

The VEX encoding was previously not heavily used in Cranelift. The only
current user are the FMA-style instructions that Cranelift has at this
time. These FMA instructions have one extra operand than `vandnps`, for
example, so I split the existing `XmmRmRVex` into a few more variants to
fit the shape of the instructions that needed generating for
`f32x4.min`. This was accompanied then with more AVX opcode definitions,
more emission support, etc.

Upon implementing all of this it turned out that the test suite was
failing on my machine due to the memory-operand encodings of VEX
instructions not being supported. I didn't explicitly add those in
myself but some preexisting RIP-relative addressing was leaking into the
new instructions with existing tests. I opted to go ahead and fill out
the memory addressing modes of VEX encoding to get the tests passing
again.

All-in-all this PR adds new instructions to the x64 backend for a number
of AVX instructions, updates 5 existing instruction producers to use AVX
instructions conditionally, implements VEX memory operands, and adds
some simple tests for the new output of `f32x4.min`. The existing
runtest for `f32x.min` caught a few intermediate bugs along the way and
I additionally added a plain `target x86_64` to that runtest to ensure
that it executes with and without AVX to test the various lowerings.
I'll also note that this, and future support, should be well-fuzzed
through Wasmtime's fuzzing which may explicitly disable AVX support
despite the machine having access to AVX, so non-AVX lowerings should be
well-tested into the future.

It's also worth mentioning that I am not an AVX or VEX or x64 expert.
Implementing the memory operand part for VEX was the hardest part of
this PR and while I think it should be good someone else should
definitely double-check me. Additionally I haven't added many
instructions to the x64 backend yet so I may have missed obvious places
to tests or such, so am happy to follow-up with anything to be more
thorough if necessary.

Finally I should note that this is just the tip of the iceberg when it
comes to AVX. My hope is to get some of the idioms sorted out to make it
easier for future PRs to add one-off instruction lowerings or such.

* Review feedback
2023-02-17 01:29:55 +00:00
Trevor Elliott
6d8f2be9e1 Use andn for band_not when bmi1 is present (#5701)
We can use the andn instruction for the lowering of band_not on x64 when bmi1 is available.
2023-02-03 16:23:18 -08:00
Saúl Cabrera
7adf3cacc5 cranelift-codegen: Prepare cranelift codegen for usage from Winch (#5413)
This commit prepares the x64 pieces from cranelift codegen to be consumed by
Winch for binary emission. This change doesn't introduce or modifies
functionality it makes the necessary pieces for binary emission public.

This change also improves documentation where applicable.
2022-12-12 09:01:06 -08:00
Andrew Brown
f063082474 x64: remove Inst::XmmLoadConst (#4876)
This is a cherry-pick of a long-ago commit, 2d46637. The original
message reads:

> Now that `SyntheticAmode` can refer to constants, there is no longer a
> need for a separate instruction format--standard load instructions will
> work.

Since then, the transition to ISLE and the use of `XmmLoadConst` in many
more places makes this change a larger diff than the original. The basic
idea is the same, though: the extra indirection of `Inst::XMmLoadConst`
is removed and replaced by a direct use of `VCodeConstant` as a
`SyntheticAmode`. This has no effect on codegen, but the CLIF output is
now clearer in that the actual instruction is displayed (e.g., `movdqu`)
instead of a made-up instruction (`load_const`).
2022-09-07 12:52:13 -07:00
Jamey Sharp
3d6d49daba cranelift: Remove of/nof overflow flags from icmp (#4879)
* cranelift: Remove of/nof overflow flags from icmp

Neither Wasmtime nor cg-clif use these flags under any circumstances.
From discussion on #3060 I see it's long been unclear what purpose these
flags served.

Fixes #3060, fixes #4406, and fixes #4875... by deleting all the code
that could have been buggy.

This changes the cranelift-fuzzgen input format by removing some IntCC
options, so I've gone ahead and enabled I128 icmp tests at the same
time. Since only the of/nof cases were failing before, I expect these to
work.

* Restore trapif tests

It's still useful to validate that iadd_ifcout's iflags result can be
forwarded correctly to trapif, and for that purpose it doesn't really
matter what condition code is checked.
2022-09-07 08:38:41 -07:00
Trevor Elliott
b5f1ab7780 x64: Lower stack_addr, udiv, sdiv, urem, srem, umulhi, smulhi in ISLE (#4741)
Lower stack_addr, udiv, sdiv, urem, srem, umulhi, and smulhi in ISLE.

For udiv, sdiv, urem, and srem I opted to move the original lowering into an extern constructor, as the interactions with rax and rdx for the div instruction didn't seem meaningful to implement in ISLE. However, I'm happy to revisit this choice and move more of the embedding into ISLE.
2022-08-23 11:22:49 -07:00
Trevor Elliott
cee4b209f3 x64: Lower fcopysign, ceil, floor, nearest, and trunc in ISLE (#4730)
https://github.com/bytecodealliance/wasmtime/pull/4730
2022-08-22 13:57:36 -07:00
Afonso Bordado
3ea1813173 x64: Add native lowering for scalar fma (#4539)
Use `vfmadd213{ss,sd}` for these lowerings.
2022-08-11 22:48:16 +00:00
Trevor Elliott
1fc11bbe51 x64: Migrate brff and I128 branching instructions to ISLE (#4599)
https://github.com/bytecodealliance/wasmtime/pull/4599
2022-08-04 08:58:50 -07:00
Nick Fitzgerald
42bba452a6 Cranelift: Add instructions for getting the current stack/frame/return pointers (#4573)
* Cranelift: Add instructions for getting the current stack/frame pointers and return address

This is the initial part of https://github.com/bytecodealliance/wasmtime/issues/4535

* x64: Remove `Amode::RbpOffset` and use `Amode::ImmReg` instead

We just special case getting operands from `Amode`s now.

* Fix s390x `get_return_address`; require `preserve_frame_pointers=true`

* Assert that `Amode::ImmRegRegShift` doesn't use rbp/rsp

* Handle non-allocatable registers in Amode::with_allocs

* Use "stack" instead of "r15" on s390x

* r14 is an allocatable register on s390x, so it shouldn't be used with `MovPReg`
2022-08-02 14:37:17 -07:00
Afonso Bordado
02c3b47db2 x64: Implement SIMD fma (#4474)
* x64: Add VEX Instruction Encoder

This uses a similar builder pattern to the EVEX Encoder.
Does not yet support memory accesses.

* x64: Add FMA Flag

* x64: Implement SIMD `fma`

* x64: Use 4 register Vex Inst

* x64: Reorder VEX pretty print args
2022-07-25 22:01:02 +00:00
Andrew Brown
8629cbc6a4 x64: port atomic_rmw to ISLE (#4389)
* x64: port `atomic_rmw` to ISLE

This change ports `atomic_rmw` to ISLE for the x64 backend. It does not
change the lowering in any way, though it seems possible that the fixed
regs need not be as fixed and that there are opportunities for single
instruction lowerings. It does rename `inst_common::AtomicRmwOp` to
`MachAtomicRmwOp` to disambiguate with the IR enum with the same name.

* x64: remove remaining hardcoded register constraints for `atomic_rmw`

* x64: use `SyntheticAmode` in `AtomicRmwSeq`

* review: add missing reg collector for amode

* review: collect memory registers in the 'late' phase
2022-07-06 23:58:59 +00:00
Chris Fallin
f85047b084 Rework x64 addressing-mode lowering to be slightly more flexible. (#4080)
This PR refactors the x64 backend address-mode lowering to use an
incremental-build approach, where it considers each node in a tree of
`iadd`s that feed into a load/store address and, at each step, builds
the best possible `Amode`. It will combine an arbitrary number of
constant offsets (an extension beyond the current rules), and can
capture a left-shifted (scaled) index in any position of the tree
(another extension).

This doesn't have any measurable performance improvement on our Wasm
benchmarks in Sightglass, unfortunately, because the IR lowered from
wasm32 will do address computation in 32 bits and then `uextend` it to
add to the 64-bit heap base. We can't quite lift the 32-bit adds to 64
bits because this loses the wraparound semantics.

(We could label adds as "expected not to overflow", and allow *those* to
be lifted to 64 bit operations; wasm32 heap address computation should
fit this.  This is `add nuw` (no unsigned wrap) in LLVM IR terms. That's
likely my next step.)

Nevertheless, (i) this generalizes the cases we can handle, which should
be a good thing, all other things being equal (and in this case, no
compile time impact was measured); and (ii) might benefit non-Wasm
frontends.
2022-05-02 16:20:39 -07:00
Chris Fallin
a0318f36f0 Switch Cranelift over to regalloc2. (#3989)
This PR switches Cranelift over to the new register allocator, regalloc2.

See [this document](https://gist.github.com/cfallin/08553421a91f150254fe878f67301801)
for a summary of the design changes. This switchover has implications for
core VCode/MachInst types and the lowering pass.

Overall, this change brings improvements to both compile time and speed of
generated code (runtime), as reported in #3942:

```
Benchmark       Compilation (wallclock)     Execution (wallclock)
blake3-scalar   25% faster                  28% faster
blake3-simd     no diff                     no diff
meshoptimizer   19% faster                  17% faster
pulldown-cmark  17% faster                  no diff
bz2             15% faster                  no diff
SpiderMonkey,   21% faster                  2% faster
  fib(30)
clang.wasm      42% faster                  N/A
```
2022-04-14 10:28:21 -07:00
Nick Fitzgerald
dc86e7a6dc cranelift: Use GPR newtypes extensively in x64 lowering (#3798)
We already defined the `Gpr` newtype and used it in a few places, and we already
defined the `Xmm` newtype and used it extensively. This finishes the transition
to using the newtypes extensively in lowering by making use of `Gpr` in more
places.

Fixes #3685
2022-02-14 12:54:41 -08:00
Nick Fitzgerald
795b0aaf9a cranelift: Add newtype wrappers for x64 register classes
This primary motivation of this large commit (apologies for its size!) is to
introduce `Gpr` and `Xmm` newtypes over `Reg`. This should help catch
difficult-to-diagnose register class mixup bugs in x64 lowerings.

But having a newtype for `Gpr` and `Xmm` themselves isn't enough to catch all of
our operand-with-wrong-register-class bugs, because about 50% of operands on x64
aren't just a register, but a register or memory address or even an
immediate! So we have `{Gpr,Xmm}Mem[Imm]` newtypes as well.

Unfortunately, `GprMem` et al can't be `enum`s and are therefore a little bit
noisier to work with from ISLE. They need to maintain the invariant that their
registers really are of the claimed register class, so they need to encapsulate
the inner data. If they exposed the underlying `enum` variants, then anyone
could just change register classes or construct a `GprMem` that holds an XMM
register, defeating the whole point of these newtypes. So when working with
these newtypes from ISLE, we rely on external constructors like `(gpr_to_gpr_mem
my_gpr)` instead of `(GprMem.Gpr my_gpr)`.

A bit of extra lines of code are included to add support for register mapping
for all of these newtypes as well. Ultimately this is all a bit wordier than I'd
hoped it would be when I first started authoring this commit, but I think it is
all worth it nonetheless!

In the process of adding these newtypes, I didn't want to have to update both
the ISLE `extern` type definition of `MInst` and the Rust definition, so I move
the definition fully into ISLE, similar as aarch64.

Finally, this process isn't complete. I've introduced the newtypes here, and
I've made most XMM-using instructions switch from `Reg` to `Xmm`, as well as
register class-converting instructions, but I haven't moved all of the GPR-using
instructions over to the newtypes yet. I figured this commit was big enough as
it was, and I can continue the adoption of these newtypes in follow up commits.

Part of #3685.
2022-02-03 14:08:08 -08:00
Alex Crichton
1141169ff8 aarch64: Initial work to transition backend to ISLE (#3541)
* aarch64: Initial work to transition backend to ISLE

This commit is what is hoped to be the initial commit towards migrating
the aarch64 backend to ISLE. There's seemingly a lot of changes here but
it's intended to largely be code motion. The current thinking is to
closely follow the x64 backend for how all this is handled and
organized.

Major changes in this PR are:

* The `Inst` enum is now defined in ISLE. This avoids having to define
  it in two places (once in Rust and once in ISLE). I've preserved all
  the comments in the ISLE and otherwise this isn't actually a
  functional change from the Rust perspective, it's still the same enum
  according to Rust.

* Lots of little enums and things were moved to ISLE as well. As with
  `Inst` their definitions didn't change, only where they're defined.
  This will give future ISLE PRs access to all these operations.

* Initial code for lowering `iconst`, `null`, and `bconst` are
  implemented. Ironically none of this is actually used right now
  because constant lowering is handled in `put_input_in_regs` which
  specially handles constants. Nonetheless I wanted to get at least
  something simple working which shows off how to special case various
  things that are specific to AArch64. In a future PR I plan to hook up
  const-lowering in ISLE to this path so even though
  `iconst`-the-clif-instruction is never lowered this should use the
  const lowering defined in ISLE rather than elsewhere in the backend
  (eventually leading to the deletion of the non-ISLE lowering).

* The `IsleContext` skeleton is created and set up for future additions.

* Some code for ISLE that's shared across all backends now lives in
  `isle_prelude_methods!()` and is deduplicated between the AArch64
  backend and the x64 backend.

* Register mapping is tweaked to do the same thing for AArch64 that it
  does for x64. Namely mapping virtual registers is supported instead of
  just virtual to machine registers.

My main goal with this PR was to get AArch64 into a place where new
instructions can be added with relative ease. Additionally I'm hoping to
figure out as part of this change how much to share for ISLE between
AArch64 and x64 (and other backends).

* Don't use priorities with rules

* Update .gitattributes with concise syntax

* Deduplicate some type definitions

* Rebuild ISLE

* Move isa::isle to machinst::isle
2021-11-18 10:38:16 -06:00
Alex Crichton
92394566fc x64: Migrate fabs and bnot vector operations to ISLE
This was my first attempt at transitioning code to ISLE to originally
fix #3327 but that fix has since landed on `main`, so this is instead
now just porting a few operations to ISLE.

Closes #3336
2021-11-16 07:36:49 -08:00
Nick Fitzgerald
d377b665c6 Initial ISLE integration with the x64 backend
On the build side, this commit introduces two things:

1. The automatic generation of various ISLE definitions for working with
CLIF. Specifically, it generates extern type definitions for clif opcodes and
the clif instruction data `enum`, as well as extractors for matching each clif
instructions. This happens inside the `cranelift-codegen-meta` crate.

2. The compilation of ISLE DSL sources to Rust code, that can be included in the
main `cranelift-codegen` compilation.

Next, this commit introduces the integration glue code required to get
ISLE-generated Rust code hooked up in clif-to-x64 lowering. When lowering a clif
instruction, we first try to use the ISLE code path. If it succeeds, then we are
done lowering this instruction. If it fails, then we proceed along the existing
hand-written code path for lowering.

Finally, this commit ports many lowering rules over from hand-written,
open-coded Rust to ISLE.

In the process of supporting ISLE, this commit also makes the x64 `Inst` capable
of expressing SSA by supporting 3-operand forms for all of the existing
instructions that only have a 2-operand form encoding:

    dst = src1 op src2

Rather than only the typical x86-64 2-operand form:

    dst = dst op src

This allows `MachInst` to be in SSA form, since `dst` and `src1` are
disentangled.

("3-operand" and "2-operand" are a little bit of a misnomer since not all
operations are binary operations, but we do the same thing for, e.g., unary
operations by disentangling the sole operand from the result.)

There are two motivations for this change:

1. To allow ISLE lowering code to have value-equivalence semantics. We want ISLE
   lowering to translate a CLIF expression that evaluates to some value into a
   `MachInst` expression that evaluates to the same value. We want both the
   lowering itself and the resulting `MachInst` to be pure and referentially
   transparent. This is both a nice paradigm for compiler writers that are
   authoring and maintaining lowering rules and is a prerequisite to any sort of
   formal verification of our lowering rules in the future.

2. Better align `MachInst` with `regalloc2`'s API, which requires that the input
   be in SSA form.
2021-10-12 17:11:58 -07:00
Johnnie Birch
e373ddfe1b Add extend-add-pairwise instructions x64 2021-07-30 15:06:58 -07:00
Johnnie Birch
500f530322 Add support for i32x4_trunc_sat_f64x2_s for x64 2021-07-26 22:24:30 -07:00
Johnnie Birch
23290f0450 Add support for i32x4_trunc_sat_f64x2_u for x64 2021-07-26 22:24:30 -07:00
Johnnie Birch
5deda27977 Add support for Saturating Rounding Q-format Multiplication for x64 2021-07-26 20:32:46 -07:00
Johnnie Birch
6fbe0b72bd Add simd_extmul_* support for x64 2021-07-15 01:07:52 -07:00
Johnnie Birch
2d676d838f Implements f64x2.convert_low_i32x4_u for x64 2021-07-09 10:39:05 -07:00
Johnnie Birch
1770880e19 x64: add support for packed promote and demote (#2783)
* Add support for x64 packed promote low

* Add support for x64 packed floating point demote

* Update vector promote low and demote by adding constraints

Also does some renaming and minor refactoring
2021-06-04 15:59:20 -07:00
Andrew Brown
2a9f458ea3 x64: lower i8x16.shuffle to VPERMI2B when possible
When shuffling values from two different registers, the x64 lowering for
`i8x16.shuffle` must first shuffle each register separately and then OR
the results with SSE instructions. With `VPERMI2B`, available in
AVX512VL + AVX512VBMI, this can be done in a single instruction after
the shuffle mask has been moved into the destination register. This
change uses `VPERMI2B` for that case when the CPU supports it.
2021-06-01 11:40:53 -07:00
Andrew Brown
459fce3467 x64: lower i8x16.popcnt to VPOPCNTB when possible
When AVX512VL or AVX512BITALG are available, Wasm SIMD's `popcnt`
instruction can be lowered to a single x64 instruction, `VPOPCNTB`,
instead of 8+ instructions.
2021-05-25 12:16:25 -07:00
Chris Fallin
95559c01aa Merge pull request from GHSA-hpqh-2wqx-7qp5
Fix spillslot reload of narrow values: zero-extend, don't sign-extend. Release v0.74.0 as security-patch release.
2021-05-21 12:01:55 -07:00
Andrew Brown
54b45d28a3 x64: lower fcvt_from_uint to VCVTUDQ2PS when possible
When AVX512VL and AVX512F are available, use a single instruction
(`VCVTUDQ2PS`) instead of a length 9-instruction sequence. This
optimization is a port from the legacy x86 backend.
2021-05-19 12:20:11 -07:00
Chris Fallin
a1c9b06cea Fix spillslot reload of narrow values: zero-extend, don't sign-extend.
Previously, the x64 backend's ABI code would generate a sign-extending
load when loading a less-than-64-bit integer from a spillslot. This is
incorrect: e.g., for i32s > 0x80000000, this would result in all high
bits set.

This interacts poorly with another optimization. Normally, the invariant
is that the high bits of a register holding a value of a certain type,
beyond that type's bits, are undefined. However, as an optimization, we
recognize and use the fact that on x86-64, 32-bit instructions zero the
upper 32 bits. This allows us to elide a 32-to-64-bit zero-extend op
(turning it into just a move, which can then sometimes disappear
entirely due to register coalescing).

If a spill and reload happen between the production of a 32-bit value
from an instruction known to zero the upper bits and its use, then we
will rely on zero upper bits that might actually be set by a
sign-extend. This will result in incorrect execution.

As a fix, we stick to a simple invariant: we always spill and reload a
full 64 bits when handling integer registers on x64. This ensures that
no bits are mangled.
2021-05-19 12:19:19 -07:00
Andrew Brown
7ef3ae2903 x64: implement vselect with variable blend instructions
This change implements `vselect` using SSE4.1's `BLENDVPS`, `BLENDVPD`,
and `PBLENDVB`. `vselect` is a lane-selecting instruction that is used
by
[simple_preopt.rs](fa1faf5d22/cranelift/codegen/src/simple_preopt.rs (L947-L999))
to lower `bitselect` to a single x86 instruction when the condition mask
is known to be boolean (all 1s or 0s, e.g., from a conversion). This is
better than `bitselect` in general, which lowers to 4-5 instructions.
The old backend had the `vselect` lowering; this simply introduces it to
the new backend.
2021-05-17 11:23:33 -07:00
Andrew Brown
e676589b0c x64: lower i64x2.imul to VPMULLQ when possible
This adds the machinery to encode the VPMULLQ instruction which is
available in AVX512VL and AVX512DQ. When these feature sets are
available, we use this instruction instead of a lengthy 12-instruction
sequence.
2021-05-13 20:14:05 -07:00
Andrew Brown
0acc1451ea x64: lower iabs.i64x2 using a single AVX512 instruction when possible (#2819)
* x64: add EVEX encoding mechanism

Also, includes an empty stub module for the VEX encoding.

* x64: lower abs.i64x2 to VPABSQ when available

* x64: refactor EVEX encodings to use `EvexInstruction`

This change replaces the `encode_evex` function with a builder-style struct, `EvexInstruction`. This approach clarifies the code, adds documentation, and results in slight speedups when benchmarked.

* x64: rename encoding CodeSink to ByteSink
2021-04-15 11:53:58 -07:00
Andrew Brown
8e495ac79d x64: match multiple ISA requirements before emitting
Because there are instructions that are present in more than one ISA feature set, we need to see if any of the ISA requirements match before emitting. This change includes the `VPABSQ` instruction as an example, which is present in both `AVX512F` and `AVX512VL`.
2021-04-08 10:30:39 -07:00
Johnnie Birch
31d3db1ec2 Implements convert low signed integer to float for x64 simd 2021-03-26 12:13:29 -07:00
Alex Crichton
3f694ae319 Use stable Rust on CI to test the x64 backend (#2766)
* Use stable Rust on CI to test the x64 backend

This commit leverages the newly-released 1.51.0 compiler to test the
new backend on Windows and Linux with a stable compiler instead of a
nightly compiler. This isolates the nightly build to just the nightly
documentation generation and fuzzing, both of which rely on nightly for
the best results right now.

* Use updated stable in book build job

* Run rustfmt for new stable

* Silence new warnings for wasi-nn

* Allow some dead code in the x64 backend

Looks like new rustc is better about emitting some dead-code warnings

* Update rust in peepmatic job

* Fix a test in the pooling allocator

* Remove `package.metdata.docs.rs` temporarily

Needs resolution of https://github.com/rust-lang/cargo/pull/9300 first

* Fix a warning in a wasi-nn example
2021-03-25 13:18:59 -05:00