* component::Linker::func_wrap: replace IntoComponentFunc with directly accepting a closure
We find that this makes the Linker::func_wrap type signature much easier
to read. The IntoComponentFunc abstraction was adding a lot of weight to
"splat" a set of arguments from a tuple of types into individual
arguments to the closure. Additionally, making the StoreContextMut
argument optional, or the Result<return> optional, wasn't very
worthwhile.
* Fixes for the new style of closure required by component::Linker::func_wrap
* fix fuzzing generator
* Update wasm-tools dependencies
This update brings in a number of features such as:
* The component model binary format and AST has been slightly adjusted
in a few locations. Names are dropped from parameters/results now in
the internal representation since they were not used anyway. At this
time the ability to bind a multi-return function has not been exposed.
* The `wasmparser` validator pass will now share allocations with prior
functions, providing what's probably a very minor speedup for Wasmtime
itself.
* The text format for many component-related tests now requires named
parameters.
* Some new relaxed-simd instructions are updated to be ignored.
I hope to have a follow-up to expose the multi-return ability to the
embedding API of components.
* Update audit information for new crates
* Upgrade wasm-tools crates, namely the component model
This commit pulls in the latest versions of all of the `wasm-tools`
family of crates. There were two major changes that happened in
`wasm-tools` in the meantime:
* bytecodealliance/wasm-tools#697 - this commit introduced a new API for
more efficiently reading binary operators from a wasm binary. The old
`Operator`-based reading was left in place, however, and continues to
be what Wasmtime uses. I hope to update Wasmtime in a future PR to use
this new API, but for now the biggest change is...
* bytecodealliance/wasm-tools#703 - this commit was a major update to
the component model AST. This commit almost entirely deals with the
fallout of this change.
The changes made to the component model were:
1. The `unit` type no longer exists. This was generally a simple change
where the `Unit` case in a few different locations were all removed.
2. The `expected` type was renamed to `result`. This similarly was
relatively lightweight and mostly just a renaming on the surface. I
took this opportunity to rename `val::Result` to `val::ResultVal` and
`types::Result` to `types::ResultType` to avoid clashing with the
standard library types. The `Option`-based types were handled with
this as well.
3. The payload type of `variant` and `result` types are now optional.
This affected many locations that calculate flat type
representations, ABI information, etc. The `#[derive(ComponentType)]`
macro now specifically handles Rust-defined `enum` types which have
no payload to the equivalent in the component model.
4. Functions can now return multiple parameters. This changed the
signature of invoking component functions because the return value is
now bound by `ComponentNamedList` (renamed from `ComponentParams`).
This had a large effect in the tests, fuzz test case generation, etc.
5. Function types with 2-or-more parameters/results must uniquely name
all parameters/results. This mostly affected the text format used
throughout the tests.
I haven't added specifically new tests for multi-return but I changed a
number of tests to use it. Additionally I've updated the fuzzers to all
exercise multi-return as well so I think we should get some good
coverage with that.
* Update version numbers
* Use crates.io
* Implement strings in adapter modules
This commit is a hefty addition to Wasmtime's support for the component
model. This implements the final remaining type (in the current type
hierarchy) unimplemented in adapter module trampolines: strings. Strings
are the most complicated type to implement in adapter trampolines
because they are highly structured chunks of data in memory (according
to specific encodings). Additionally each lift/lower operation can
choose its own encoding for strings meaning that Wasmtime, the host, may
have to convert between any pairwise ordering of string encodings.
The `CanonicalABI.md` in the component-model repo in general specifies
all the fiddly bits of string encoding so there's not a ton of wiggle
room for Wasmtime to get creative. This PR largely "just" implements
that. The high-level architecture of this implementation is:
* Fused adapters are first identified to determine src/dst string
encodings. This statically fixes what transcoding operation is being
performed.
* The generated adapter will be responsible for managing calls to
`realloc` and performing bounds checks. The adapter itself does not
perform memory copies or validation of string contents, however.
Instead each transcoding operation is modeled as an imported function
into the adapter module. This means that the adapter module
dynamically, during compile time, determines what string transcoders
are needed. Note that an imported transcoder is not only parameterized
over the transcoding operation but additionally which memory is the
source and which is the destination.
* The imported core wasm functions are modeled as a new
`CoreDef::Transcoder` structure. These transcoders end up being small
Cranelift-compiled trampolines. The Cranelift-compiled trampoline will
load the actual base pointer of memory and add it to the relative
pointers passed as function arguments. This trampoline then calls a
transcoder "libcall" which enters Rust-defined functions for actual
transcoding operations.
* Each possible transcoding operation is implemented in Rust with a
unique name and a unique signature depending on the needs of the
transcoder. I've tried to document inline what each transcoder does.
This means that the `Module::translate_string` in adapter modules is by
far the largest translation method. The main reason for this is due to
the management around calling the imported transcoder functions in the
face of validating string pointer/lengths and performing the dance of
`realloc`-vs-transcode at the right time. I've tried to ensure that each
individual case in transcoding is documented well enough to understand
what's going on as well.
Additionally in this PR is a full implementation in the host for the
`latin1+utf16` encoding which means that both lifting and lowering host
strings now works with this encoding.
Currently the implementation of each transcoder function is likely far
from optimal. Where possible I've leaned on the standard library itself
and for latin1-related things I'm leaning on the `encoding_rs` crate. I
initially tried to implement everything with `encoding_rs` but was
unable to uniformly do so easily. For now I settled on trying to get a
known-correct (even in the face of endianness) implementation for all of
these transcoders. If an when performance becomes an issue it should be
possible to implement more optimized versions of each of these
transcoding operations.
Testing this commit has been somewhat difficult and my general plan,
like with the `(list T)` type, is to rely heavily on fuzzing to cover
the various cases here. In this PR though I've added a simple test that
pushes some statically known strings through all the pairs of encodings
between source and destination. I've attempted to pick "interesting"
strings that one way or another stress the various paths in each
transcoding operation to ideally get full branch coverage there.
Additionally a suite of "negative" tests have also been added to ensure
that validity of encoding is actually checked.
* Fix a temporarily commented out case
* Fix wasmtime-runtime tests
* Update deny.toml configuration
* Add `BSD-3-Clause` for the `encoding_rs` crate
* Remove some unused licenses
* Add an exemption for `encoding_rs` for now
* Split up the `translate_string` method
Move out all the closures and package up captured state into smaller
lists of arguments.
* Test out-of-bounds for zero-length strings