* Use `global_asm!` instead of external assembly files
This commit moves the external assembly files of the `wasmtime-fiber`
crate into `global_asm!` blocks defined in Rust. The motivation for
doing this is not very strong at this time, but the points in favor of
this are:
* One less tool needed to cross-compile Wasmtime. A linker is still
needed but perhaps one day that will improve as well.
* A "modern" assembler, built-in to LLVM, is used instead of whatever
appears on the system.
The first point hasn't really cropped up that much and typically getting
an assembler is just as hard as getting a linker nowadays. The second
point though has us using `hint #xx` in aarch64 assembly instead of the
actual instructions for assembler compatibility, and I believe that's no
longer necessary because the LLVM assembler supports the modern
instruction names.
The translation of the x86/x86_64 assembly has been done to Intel
syntax as well as opposed to the old AT&T syntax since that's Rust's
default. Additionally s390x still remains in an external assembler file
because `global_asm!` is still unstable in Rust on that platform.
* Simplify alignment specification
* Temporarily disable fail-fast
* Add `.cfi_def_cfa_offset 0` to fix CI
* Turn off fail-fast
* Review comments
* Implement support for `async` functions in Wasmtime
This is an implementation of [RFC 2] in Wasmtime which is to support
`async`-defined host functions. At a high level support is added by
executing WebAssembly code that might invoke an asynchronous host
function on a separate native stack. When the host function's future is
not ready we switch back to the main native stack to continue execution.
There's a whole bunch of details in this commit, and it's a bit much to
go over them all here in this commit message. The most important changes
here are:
* A new `wasmtime-fiber` crate has been written to manage the low-level
details of stack-switching. Unixes use `mmap` to allocate a stack and
Windows uses the native fibers implementation. We'll surely want to
refactor this to move stack allocation elsewhere in the future. Fibers
are intended to be relatively general with a lot of type paremters to
fling values back and forth across suspension points. The whole crate
is a giant wad of `unsafe` unfortunately and involves handwritten
assembly with custom dwarf CFI directives to boot. Definitely deserves
a close eye in review!
* The `Store` type has two new methods -- `block_on` and `on_fiber`
which bridge between the async and non-async worlds. Lots of unsafe
fiddly bits here as we're trying to communicate context pointers
between disparate portions of the code. Extra eyes and care in review
is greatly appreciated.
* The APIs for binding `async` functions are unfortunately pretty ugly
in `Func`. This is mostly due to language limitations and compiler
bugs (I believe) in Rust. Instead of `Func::wrap` we have a
`Func::wrapN_async` family of methods, and we've also got a whole
bunch of `Func::getN_async` methods now too. It may be worth
rethinking the API of `Func` to try to make the documentation page
actually grok'able.
This isn't super heavily tested but the various test should suffice for
engaging hopefully nearly all the infrastructure in one form or another.
This is just the start though!
[RFC 2]: https://github.com/bytecodealliance/rfcs/pull/2
* Add wasmtime-fiber to publish script
* Save vector/float registers on ARM too.
* Fix a typo
* Update lock file
* Implement periodically yielding with fuel consumption
This commit implements APIs on `Store` to periodically yield execution
of futures through the consumption of fuel. When fuel runs out a
future's execution is yielded back to the caller, and then upon
resumption fuel is re-injected. The goal of this is to allow cooperative
multi-tasking with futures.
* Fix compile without async
* Save/restore the frame pointer in fiber switching
Turns out this is another caller-saved register!
* Simplify x86_64 fiber asm
Take a leaf out of aarch64's playbook and don't have extra memory to
load/store these arguments, instead leverage how `wasmtime_fiber_switch`
already loads a bunch of data into registers which we can then
immediately start using on a fiber's start without any extra memory
accesses.
* Add x86 support to wasmtime-fiber
* Add ARM32 support to fiber crate
* Make fiber build file probing more flexible
* Use CreateFiberEx on Windows
* Remove a stray no-longer-used trait declaration
* Don't reach into `Caller` internals
* Tweak async fuel to eventually run out.
With fuel it's probably best to not provide any way to inject infinite
fuel.
* Fix some typos
* Cleanup asm a bit
* Use a shared header file to deduplicate some directives
* Guarantee hidden visibility for functions
* Enable gc-sections on macOS x86_64
* Add `.type` annotations for ARM
* Update lock file
* Fix compile error
* Review comments